New Methodological Developments

CNES ORFEO Program

Jordi Inglada

CENTRE NATIONAL D’ÉTUDES SPATIALES

Namur, February 12, 2008
Introduction

Goals of the presentation

- Results from French labs involved in ORFEO
- Most of them are (co-)funded by CNES for ORFEO methodological research

Methodological objectives

- Pre-processing
- Change detection
- Segmentation
- Object recognition
Pre-processing

- No major theoretical new results within the last year
- Ortho-registration now available in OTB 2.0
- Radiometric corrections for optical sensors available in OTB 2.0
- Image registration (ITK framework) documented for remote sensing images
Outline

Pre-processing

Change detection
 Similarity measures
 DB update

Segmentation
 Line segment detection
 High Order Active Contours
 Point Marked Processes
 Multi-resolution classification

Object recognition
 Structural object recognition
 Supervised geometric recognition
 Spatial reasoning
Statistical similarity measures
Multi-scale change profile

▶ Researcher
 ▶ Télécom Bretagne: Grégoire Mercier
 ▶ CNES R&T funding.

▶ Objectives
 ▶ Improve the estimation of similarity measures for multi-sensor images.
 ▶ Few pixels; Multi-scale approach; Statistical modeling

▶ Results: multi-sensor multi-scale change profile
 ▶ Use of series cumulant expansion for statistical divergence (mutual information, etc.)
 ▶ Optimized multi-scale computation: computation time for windows from 5×5 up to 51×51 is only 1.5 times higher than for a 31×31 window.
Introduction
Pre-processing
Change detection
Segmentation
Object recognition

Similarity measures
DB update

Figure: Change detection results obtained with the MCP.

Namur, February 12, 2008
Statistical similarity measures
Estimation of multivariate Gamma distributions

▶ Researcher
 ▶ TéSA/ENSEEIHT: Jean-Yves Tourneret, Florent Chatelain
 ▶ CNES R&T funding.

▶ Objectives
 ▶ Find robust estimators for SAR pdfs
 ▶ Develop estimators for similarity measures between pdfs

▶ Results
 ▶ Estimators for Gamma pdfs for pairs of images with identical and different number of looks.
 ▶ Optimized estimator for the correlation coefficient between local neighborhoods (change detection)
 ▶ Link between correlation and mutual information for the Gamma pdf
Namur, February 12, 2008

Figure: Change detection results using bivariate Gammas.
Semi-supervised approach
SVM classification for change detection

- **Researcher**
 - Tarek Habib, PhD student. Co-funded by CNES and Thales-Alenia-Space. End of PhD: October 2008

- **Objectives**
 - Develop semi-supervised similarity measures for change detection.
 - Multi-sensor and without prior information about the type of change.

- **Results**
 - Feature and kernel selection techniques for SVM classification.
 - Trade-off between speed and accuracy: kernel optimization/simplification.
Introduction
Pre-processing
Change detection
Segmentation
Object recognition

Similarity measures
DB update

Pre-processing → Kernel selection → Learn

SV selection

Feature selection

Learn → Classification optimization → Kernel optimization

Classify

Namur, February 12, 2008
Outline

Pre-processing

Change detection
 Similarity measures
 DB update

Segmentation
 Line segment detection
 High Order Active Contours
 Point Marked Processes
 Multi-resolution classification

Object recognition
 Structural object recognition
 Supervised geometric recognition
 Spatial reasoning

Namur, February 12, 2008
DB update
Use of image and exogenous data

- **Researcher**

- **Objectives**
 - Information extraction using ancillary data (vector, raster)
 - Multi-sensor

- **Results**
 - Research just started: problem position
 - Internship working on a particular case

Namur, February 12, 2008
Outline

Pre-processing
Change detection
 Similarity measures
 DB update
Segmentation
 Line segment detection
 High Order Active Contours
 Point Marked Processes
 Multi-resolution classification
Object recognition
 Structural object recognition
 Supervised geometric recognition
 Spatial reasoning

Namur, February 12, 2008
Line segment detection
Use of Gestalt theory

- Researchers
 - CMLA, ENS Cachan: Jérémie Jakubowicz, Rafael Grompone. Partial CNES R&T funding.

- Objectives
 - Use Gestalt – a contrario – approaches for segment detection in HR images
 - Improve accuracy of current approaches

- Results
 - Multi-segment detector: improves Desolneux et al. detector
 - Line Segment Detector: speeds up the multi-segment detector
 - Right angle detector

Namur, February 12, 2008
Introduction
Pre-processing
Change detection
Segmentation
Object recognition

Line segment detection
High Order Active Contours
Point Marked Processes
Multi-resolution classification

Namur, February 12, 2008
Outline

Pre-processing
Change detection
 Similarity measures
 DB update
Segmentation
 Line segment detection
 High Order Active Contours
 Point Marked Processes
 Multi-resolution classification
Object recognition
 Structural object recognition
 Supervised geometric recognition
 Spatial reasoning
High Order Active Contours

- Researchers
 - CNES R&T funding.

- Objectives
 - Road and hydrographic network extraction.
 - In HR linear features become regions.
 - Deal with occlusions.

- Results
 - Extension of the snake approach.
 - Stable, convergent solutions thanks to appropriate energy function definitions.

Namur, February 12, 2008
Outline

Pre-processing
Change detection
 Similarity measures
 DB update
Segmentation
 Line segment detection
 High Order Active Contours
 Point Marked Processes
 Multi-resolution classification
Object recognition
 Structural object recognition
 Supervised geometric recognition
 Spatial reasoning

Namur, February 12, 2008
Point Marked Processes
Parameter estimation

Researchers

- INRIA: Xavier Descombes, Florent Chatelain, Josiane Zerubia. CNES R&T funding.

Objectives

- Overcome the limitations of Markov models for image segmentation.
- Use simple object models in a stochastic framework.

Results

- How to choose the meta parameters for the model.
- Counting objects.

Namur, February 12, 2008
Introduction
Pre-processing
Change detection
Segmentation
Object recognition

Line segment detection
High Order Active Contours
Point Marked Processes
Multi-resolution classification

Namur, February 12, 2008
Outline

Pre-processing
Change detection
 Similarity measures
 DB update
Segmentation
 Line segment detection
 High Order Active Contours
 Point Marked Processes
 Multi-resolution classification
Object recognition
 Structural object recognition
 Supervised geometric recognition
 Spatial reasoning
Multi-resolution classification

Using classifier fusion

- **Researcher**
 - LSIIT, Univ. Strasbourg: Pierre Gançarski, Cédric Wemmert
 - CNES R&T funding.

- **Objectives**
 - Joint use of multi-sensor and multi-scale remote sensing images for classification.
 - Integration of Pléiades-like data together with SPOT, for instance.

- **Results**
 - Multi-criteria classifier fusion.
 - Work in progress.

Namur, February 12, 2008
Outline

Pre-processing
Change detection
 Similarity measures
 DB update
Segmentation
 Line segment detection
 High Order Active Contours
 Point Marked Processes
 Multi-resolution classification
Object recognition
 Structural object recognition
 Supervised geometric recognition
 Spatial reasoning

Namur, February 12, 2008
Structural object recognition
High level object modelling

▶ Researchers
 ▶ SIP/CRIP-5, Univ. Paris 5: Guray Erus, Nicolas Loménie.
 Partial CNES R&T funding.

▶ Objectives
 ▶ Detect and recognize man mad objects in HR images.
 ▶ Use of structural models semi-automatically built from an
 example data base.

▶ Results
 ▶ Relational attributed graphs for object representation.
 ▶ Edition distance as a matching metric.

Namur, February 12, 2008
Outline

Pre-processing
Change detection
 Similarity measures
 DB update
Segmentation
 Line segment detection
 High Order Active Contours
 Point Marked Processes
 Multi-resolution classification

Object recognition
 Structural object recognition
 Supervised geometric recognition
 Spatial reasoning

Namur, February 12, 2008
Supervised geometric recognition
SVM based classification

- CNES internal studies
 - Jordi Inglada (optical), Céline Tison (SAR)

- Objectives
 - Use supervised classification for object recognition in HR images.
 - Evaluate the usefulness of geometric descriptors.

- Results
 - SVM-based image patch classifier using geometric descriptors after an unsupervised segmentation step.
 - Same approach for cartographic objects in SPOT5 images and vehicles in SAR.

Namur, February 12, 2008
Outline

Pre-processing

Change detection
 Similarity measures
 DB update

Segmentation
 Line segment detection
 High Order Active Contours
 Point Marked Processes
 Multi-resolution classification

Object recognition
 Structural object recognition
 Supervised geometric recognition

Spatial reasoning

Namur, February 12, 2008
Spatial reasoning
RCC8 and multi-scale segmentation

- Researcher
 - C-S: Julien Michel. CNES R&T funding.

- Objectives
 - Use of spatial reasoning techniques for scene description and composite object recognition.
 - Integration into a supervised classification system.

- Results
 - Multi-scale geodesic morphological segmentation.
 - Attributes relational graph containing spatial relationships between regions of the images.
 - Object recognition by graph matching.
Spatial reasoning
Fuzzy, uncertain, reasoning

- **Researcher**

- **Objectives**
 - Integrate uncertain, inaccurate informations in the spatial reasoning framework.
 - Application to scene modeling and land-use information extraction from HR images.

- **Results**

Namur, February 12, 2008
Credits

Contributions from all researchers involved in this research:

- Télécom Bretagne: G. Mercier
- TéSA/ENSEEIHT: J-Y. Tourneret, P. Marthon
- GIPSA Lab: J. Chanussot
- CMLA: J. Jakubowicz, R. Grompone, J-M. Morel
- LSIIT, Univ. Strasbourg: P. Gançarski, C. Wemmert
- SIP/CRIP-5, Univ. Paris 5: G. Erus, N. Loménie
- C-S: J. Michel
- Télécom ParisTech: C. Vanegas, I. Bloch, H. Maître

CNES: T. Habib, V. Poulain, C. Tison

Namur, February 12, 2008