

BEODay 2016

8th December

From 1st October 2014 to 31st March 2019

BELGIAN COLLABORATIVE AGRICULTURE MONITORING AT PARCEL LEVEL FOR SUSTAINABLE CROPPING SYSTEMS

Cindy Delloye (UCL)

with contributions from Defourny Pierre, Wellens Joost, Piccard Isabelle, Gobin Anne, Kristof Van Tricht, Goffart Jean-Pierre, Curnel Yannick, Goffart Dimitri, Planchon Viviane, Baret Fred, Weiss Marie, Jingyi Jiang

4 years BELSPO project covering 3 crops over the whole Belgium

▶ 5 scientific partners led by UCL and 8 pilot/technical centers

Products at the belgian scale

Collaborative IT platform

with ...

Pilot & Technical Centers
Pionneers farmers

Agriculture Monitoring parcel level

3 crops

Partnership and collaborative system *First phase: learning phase*

Products based on data rich model

Nitrogen advice

Development monitoring & anomalies detection

Yield estimation

Heterogeneity map

Field data Feedback

delivery

Partnership and collaborative system Second phase: pioneers farmers integration

Products based on data rich model

Nitrogen advice

Development monitoring & anomalies detection

Yield prediction

Heterogeneity map

Field data Feedback

delivery

First results

IMPROVEMENT OF THE NITROGEN ADVICE WITH SENTINEL IMAGES

Improvement of the Nitrogen advice with Sentinel images

 Objective: use of Sentinel data to improve the accuracy of the actual Nitrogen recommendation

Estimation of the N status Empirical model

Is the last N dosis required?

Empirical relation

Date effect?

Estimation of the N status Radiative transfer model (1)

Is the last N dosis required?

Relation N vs Chlorophyll

Estimation of the N status Radiative transfer model (2)

Relation ChI measured and estimated from RTM

Previous crop (Requaferti input) Crop type map 2015

Classifier comparison

K-nearest neighbours

Random Forest (100 trees)

Input: DMC/Deimos

- 8 March 2015
- 14 April 2015
- 4 June 2015
- 11 July 2015

Equal CAL/VAL data

OA = 83%

OA = 85%

Similar accuracies in this test, but random forest allows to add more input data

Previous method

Current method

Adding SAR data (and more optical)

→ **structural** information to classification in addition to **biophysical** information from optical data

Especially interesting for early crop mapping

OA = 91%

		DMC		Se	Sentinel 1			
8/03	14/04	4/06	11/07	1-7/08	Feb-Mar	May-Jun	Sep	
Х								35%
Х	Х							59%
Х	Х	Х				73%		
X	Х	Х	Х			84%		
Х	Х	Х	Х	Х		86%		
					X			52%
				X	Х		64%	
				X	Х	Х	76%	
Х					X			70%
Х	Х				X			75%
Х	Х				X	Х		75%
Х	Х	Х			X	Х		79%
Х	Х	Х			Х	Х	Х	85%
Х	Х	Х	Х		Х	Х	Х	89%
Х	Х	Х	Х	Х	Х	Х	Х	91%

Previous crop (Requaferti input) Crop type map 2016

	Wheat	Barley	Rape seed	Maize	Potatoes	Beets	Flax	Grass land	Forest	Built- up	Water
Confidence	82%	66%	55%	66%	62%	69%	69%	71%	60%	73%	54%
Accuracy	99%	92%	57%	94%	93%	86%	85%	94%	70%	79%	72%

First results

CROP DEVELOPMENT MONITORING

&

ANOMALY DETECTION

Development monitoring Comparison between fields

Development monitoring during the season with the Green Area Index (GAI) and meteo data

Anomaly detection

Example on the maize (Hooibeekhoeve "Tolhuis Tongerlo"): heterogeneity due to water excess is clearly visible on Sentinel-2 fCover image time series

First results

YIELD ESTIMATION

Yield estimation based on Aquacrop Integration of fCover from Sentinel-2

- Simple and robust model to estimate the biomass and yield (Requaferti input)
- Based on several factors including meteo data and development cycle of the crop

Yield estimation based on Aquacrop First results

Development
of products of
interest
requested by
the partners

Product requested by the PC/TC Intra field heterogeneity map (1)

RapidEye, 5m (visual & fAPAR)

Sentinel-2, 10m (visual & fAPAR)

Example: potato field in Gembloux

Segmentation results

→ Similar zones

Product requested by the PC/TC Intra field heterogeneity map (2)

08/09/2016, GAI from Sentinel-2

09/09/2016, NDVI from UAV flight - Hesbaye Frost

- Biophysical variables (fAPAR, GAI) retrieved from Sentinel-2 images show a good potential to map intra-field heterogeneity
- Research is ongoing on this product

Product requested by the PC/TC Water damage detection

VITO R&D results on using UAV and Sentinel-2 for water detection on a potato field managed by Jacob Van den Borne:

UAV fCover < 60%

→ crop lost or
severely damaged

Flanders: 15% lost or severely damaged

Per province:

» Antwerpen: 35%

» Limburg: 19%

» Vlaams-Brabant: 13%

» Oost-Vlaanderen: 12%

» West-Vlaanderen: 11%

Flemish agricultural regions:

» Kempen: 26%

Vlaamse Zandstreek: 11%

» Duinen en Polders: 8%

Adjustment of the threshold for Sentinel-2 → <50%

Thank you for your attention

