

Using remote sensing for detecting the global impact of climate extremes on vegetation

and

improving drought monitoring programs

NIKO VERHOEST DIEGO MIRALLES HANS LIEVENS

Laboratory of Hydrology and Water Management

Ghent University

Drought is an important problem in many areas of the world

Drought is an important problem in many areas of the world with devastating consequences...

- Is a drought event about to strike?
- Where is it occurring?
- How severe is the drought event?

Drought monitoring & early-warning systems

Can remote sensing provide input?

Agricultural drought

climate extremes

low soil moisture contents

reduced transpiration: plant stress

Result:

- reduced crop production
- vegetation die-off

REMOTE SENSING?

high temperatures (heat waves)

shortage of precipitation

Agricultural drought

climate extremes

low soil moisture contents

reduced transpiration: plant stress

Result:

- reduced crop production
- vegetation die-off

REMOTE SENSING?

high <u>temperatures</u> (heat waves)

shortage of precipitation

1. To understand how climate and climate extremes influence vegetation

2. To improve drought monitoring systems

support to science element

3. To improve early-warning systems for vegetation stress

Use satellite observations

to assess past changes in extreme events and their carbon cycle impacts

Use this information to evaluate climate model performance

> Impact of climate and climate change on vegetation?

Use satellite observations

to assess past changes in extreme events and their carbon cycle impacts

Use this information to evaluate climate model performance

> Statistical analyses and data mining techniques

SAT-EX OR HOW CLIMATE EXTREMES LINK TO VEGETATION EXTREMES

Using remote sensing observations to steer hydrologic models

HYDRAS+ OR HOW REMOTE SENSING CAN IMPROVE DROUGHT MONITORING

Two ongoing BELSPO projects further explore the potential of remote sensing for understanding and mitigating climate impacts on vegetation:

- SAT-EX unravels globally climate impacts on vegetation through exploring long-term remotely-sensed datasets
- Hydras+ develops methodologies for improving drought monitoring systems through incorporating a wide variety of remotely-sensed observations

(Near-)Future research:

 Apply remotely-sensed fluorescence observations to assess vegetation stress and use this for estimating vegetation transpiration

Niko Verhoest

Laboratory of Hydrology and Water Management Faculty of Bioscience Engineering Ghent University Coupure links 653 B-9000 Ghent Belgium

Niko.Verhoest@UGent.be

