ANAGHLIA

Integrated Processing And Ground Truthing Of Hyperspectral And LiDAR Images in Archaeology

Véronique De Laet¹, Luc Bertels² David Jordan³, Martijn Van Leusen⁴, Yoon Jung Choi³, Máté Stibrányi⁵, Ben Somers², Dries Raeymaekers², Els Knaeps², G. Verstraeten ¹

¹KU Leuven, Leuven, Belgium ² VITO, Mol, Belgium, ³Johannes Gutenberg University, Mainz, Germany, ⁴Groningen Institute of Archaeology, Groningen, The Netherlands, ⁵Hungarian National Museum, Budapest, Hungary

ANAGHLIA

Partner 1

K.U.Leuven - Physical and Regional Geography Research Group

•Gert Verstraeten (project coordinator)

•Véronique De Laet (scient coordinator & PI)

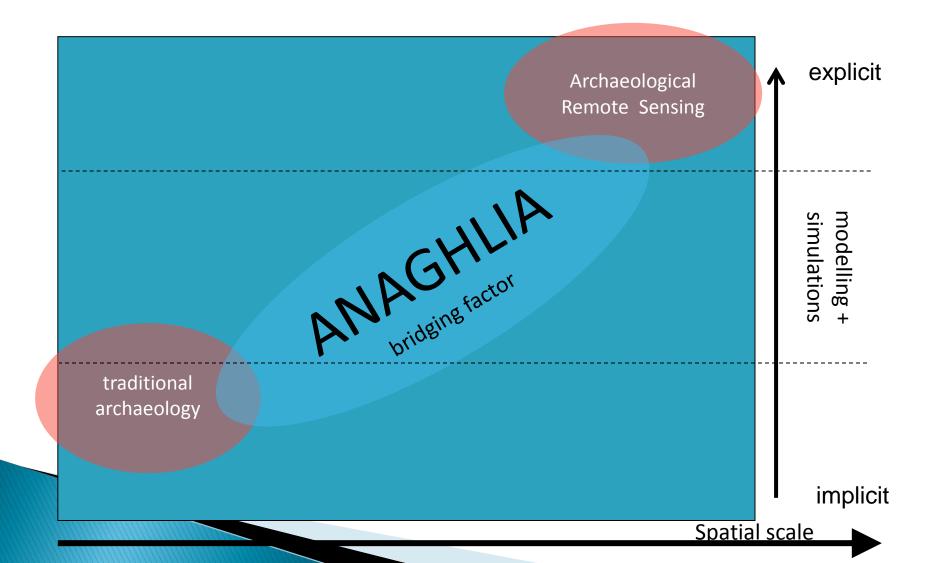
Partner 2 VITO •Dries Raeymaekers •Luc Bertels

Partner 3 The Groningen Institute of Archaeology (GIA)

•Martijn Van Leusen

•Wieke de Neef

Partner 4

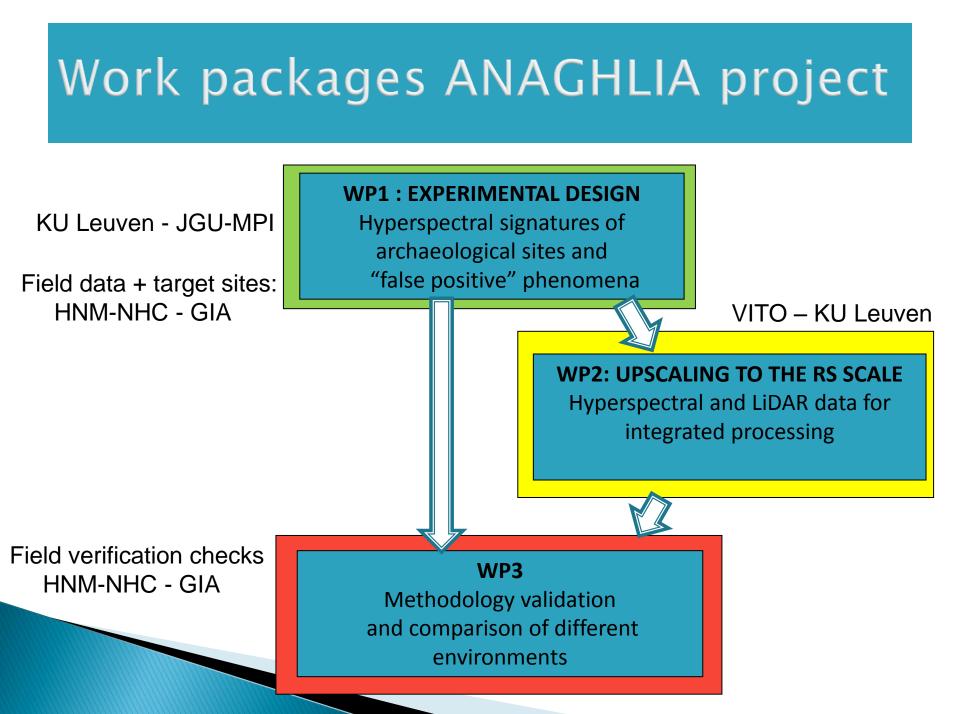

Hungarian National Museum – National Heritage Protection Center •Zoltán Kárpáti •Máté Stibrányi

Partner 5 Johannes Gutenberg University Mainz – Institute of Geosciences •David Jordan Max Plank Institute for Chemistry, Mainz Remote Sensing Group •Thomas Wagner

Context of the project

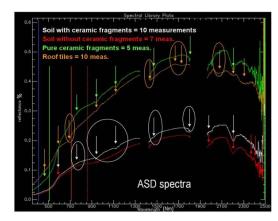
- Heritage landscapes are fragile and once lost, irreplaceable.
 - => Distribution (spatial relation/variation) and state of preservation of sites is important for policies on protection
- RS potentially provides significant added value to identify/inventories archaeological sites
- Current problem:
 - Due to characteristics of the large majority of archaeological sites
 - The spatial and spectral resolution of any RS data must be extremely high
 - Processes producing signatures are not well understood
 - Sensing campaigns cannot be well targeted or designed
- To define the resolution requirements:
 - One must investigate the processes producing remotely detectable geoarchaeological signatures

Context of the project


Aim of the 2-year project

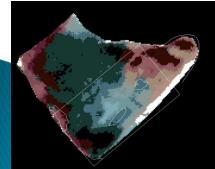
- Spectroscopy for studying archaeological features and deposits and the post-depositional processes affecting the archaeological record.
- Integration of hyperspectral and LiDAR data for the identification of ancient natural and cultural features

- All applied in two different environments:
 - The flat Great Hungarian Plain
 - High mountain relief in Calabria


WP 1: Methodology

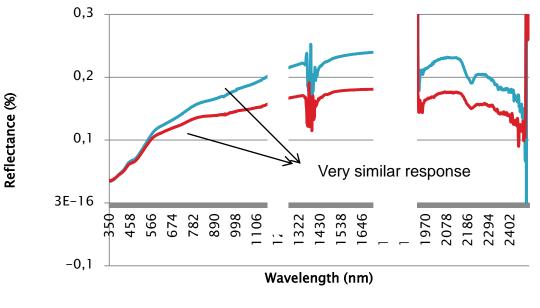
• <u>Phase 1</u>:

- Analyse surface soil reflectance spectra using
 - Spectral feature analysis
 - Specific absorption feature parameters
- Record distribution of soils at scale 1:1000
 - Carry out lab analyses
- Relate surface spectra to the spectra recorded in vertical sections and to the soil characteristics and thus to the origins of the strata.
- <u>Phase 2</u>: Comparing, Modelling and Up-Scaling:
 - Model how well RS systems can distinguish the site spectra from the background signal
 - Simulating density variations
 - Find out at what spatial and spectral resolution, and at what range of wavelengths, a remote system must operate to successfully distinguish each site?
 - Create synthetic models to describe sites of different characteristics, then forward modelling the results of remote imaging spectroscopy (up-scaling)

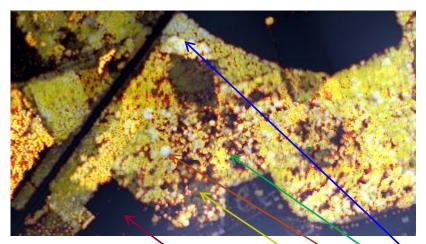


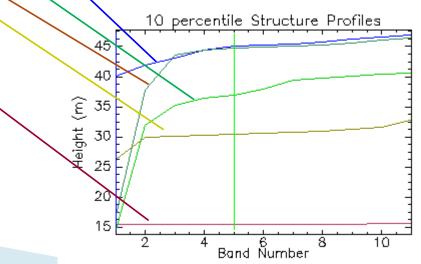
Measuring reflectance spectra on a prepared soil surface

WP 2: Aims & Outcome


- Perform manual (guided) and automatic site detection
 - Potential feature types:
 - Topographic features:
 - Negative/positive topographic features
 - Concentrations of stones and clearance cairns indicating the presence of architectural structures
 - Spectral features:
 - Ploughed-up habitation layers
 - Concentrations of pottery and building material

WP 2: Methodology (1)


 Methodology of WP1 supplemented with advanced spectral unmixing (MESMA) (1) and advanced LiDAR processing (2) techniques


WP 2: Methodology:2) Advanced LiDAR processing

Extraction of vertical structure profiles from LiDAR data

Visualisation of the 10 percentile height /intensity profile:

100 %	(max height)	(R)
50 %	(median height)	(G)
0 %	(min height)	(B)

WP 3: Background & Aims

- Operational dataset calibrated within the first two WP's needs to be validated using:
 - Appropriate univariate and multivariate statistical analysis
 - Field checking of potential site targets
- Aims
 - Show how good/efficient methods are for detecting new sites and identifying "false positives"
 (= INTERNAL VALIDATION)
 - Evaluate whether methods can be exported to the Hungarian Plain (evaluate how universal they are) (= EXTERNAL VALIDATION)

Information on the effects of landscape characteristics

Innovative aspects ANAGHLIA project

- Application of hyperspectral and LIDAR RS to a rather unexplored discipline such as archaeology. Especially the integration of both data types is very innovative
- Non-invasive RS techniques have the potential to discover sites prior to further destruction and that are not detectable by other means
 - We can say something about the risk of further destruction
- The comparison of different study areas will make the outcomes (or the procedures?) more robust.
- The application of "external" techniques within archaeology may advance technological development within the discipline itself.

ANAGHLIA

Integrated Processing And Ground Truthing Of Hyperspectral And LiDAR Images in Archaeology

Véronique De Laet¹, Luc Bertels² David Jordan³, Martijn Van Leusen⁴, Yoon Jung Choi³, Máté Stibrányi⁵, Ben Somers², Dries Raeymaekers², Els Knaeps², G. Verstraeten ¹

¹KU Leuven, Leuven, Belgium ² VITO, Mol, Belgium, ³Johannes Gutenberg University, Mainz, Germany, ⁴Groningen Institute of Archaeology, Groningen, The Netherlands, ⁵Hungarian National Museum, Budapest, Hungary