

Sensing the impact of global climate and climate extremes on vegetation

SET-EX

the team

climate extreme

- More frequent and intense heatwaves
- Overall water cycle intensification: stronger storms and floods
- Dry areas become drier: droughts more persistent and severe feedback on heatwaves intensification
- Widening of tropics, water cycle reorganisation: droughts at mid-latitudes
- Intensified (?) El Niño and monsoons

Impacts on global vegetation

- Large uncertainty in terrestrial carbon sinks (vegetation) and how they are impacted by climate extremes
- Call for observational evidence (WCRP) to (1) improve understanding and (2) benchmark models

Can satellites respond to this call?

the challenge

the approach

and the second second

-

		2015	2016		2017	2018	
	WP1 – Coordination & Dissemination						
	Steering committee meetings & reports		\mathbf{X}				
	Submission of publications (orientative)			*			
	Dissemination in conferences			\mathbf{X}			
	General management & supervision						
	Development & maintenance of web						
	WP2 – Exploration of end-user needs						
	End-user requirements survey & report						UGent – Hvdro
	WP3 – Setup & Pre-analyses						
	Background review & goals consolidation						UGent – Math
	Database collection & web organization						
	Clustering extreme indices for vegetation						ULB
	Clustering extreme indices for climate						A 11
ns	WP4 – Observed Variability & Attribution						All
tio	Machine learning model for vegetation						1
Va	Attribution for vegetation						OVEL
Sel	Fingerprint attribution climate extremes						Disce
go	Machine learning sensitivity veg-climate						
Ħ	WP5 – Comparison to IPCC ESMs						wing
Itp	Past-time evaluation vegetation dynamics						marn
٦ ا	Past-time evaluation climate extremes						anchi
ode	Model predictability of future vegetation						Bei
Ĕ	Model predictability of future extremes						
	WP6 – Synopsis						
	Synthesis & societal implications						
	PhD thesis writing						
	Future roadmap						

~MM Mm

<u>Climate Variables</u>

① <u>Satellite-based</u> datasets

radiation, temperature, precipitation, soil moisture, snow cover...etc.

2 Higher-level features from them anomalies, climatologies, lagged variables, past cumulative values, extreme indices, etc.

Nonlinear Granger-causality

based on a **Random Forest** predictive model

Monling base

Vegetation anomalies

time series of **<u>observed</u>** NDVI, VOD, LAI per pixel mode

Explained vegetation variance

Granger causality

Linear regression

Non-linear

Linear

vegetation response to climate <u>highly non-linear</u>

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-266, 2016 Manuscript under review for journal Geosci. Model Dev. Published: 16 November 2016 © Author(s) 2016. CC-BY 3.0 License. Geoscientific Model Development

9/15

A non-linear Granger causality framework to investigate

climate-vegetation dynamics

Potential to **isolate the effect** of...

- l) climate variables
- (2) climatic **extremes**
- ③ antecedent periods

Main controls over vegetation

Papagiannopoulou et al., in review (ERL)

Explained variance by climatic oscillations

Oscillations: recurrent changes in ocean—atmosphere circulation, that also affect vegetation

Explained variance by climatic oscillations

Identification of vegetation extremes

timing of break points in the NDVI record

Response to extreme climate events

Sensitivity at different periods and scales

Wavelet coherence to:

- Quantify sensitivity at various scales
- See changes in sensitivity through time
- Testing various vegetation indices: NDVI, VOD, LAI, GPP
 - Example: sensitivity of Sahel vegetation to rainfall

VOD

Claessen et al., in prep.

<u>Climate Variables</u>

(1) CMIP5 <u>ESM outputs</u> radiation, air temperature, surface temperature, precipitation, soil moisture, snow cover...etc.

2 Higher-level features from them anomalies, climatologies, lagged variables, past cumulative values, extreme indices, etc.

Nonlinear Granger-causality

based on a **Random Forest** predictive model

Vegetation anomalies

time series of **predicted LAI** at each pixel mod

early results – Benchmarking

ORCHIDEE GPP

JULES GPP

14/15

Lessons to be learnt from benchmarking:

- Is vegetation in our ESMs the same sensitive to climate and climate extremes than in nature?
- 2 Are <u>extremes in vegetation and carbon storage</u> caused by the same climatic factors?
- ③ Which <u>models are more adequate</u> to represent these changes and why?
- 4
 - What do **these 'good' models predict** in terms of future vegetation and climate extremes?

(5) Can we predict future vegetation with a data-driven method?

Sensing the impact of global climate and climate extremes on vegetation

