Land cover, land use and landscape agri-environmental indicators developed during the IRENA Operation

Dr. Paul Campling
Spatial Applications
Division Leuven,
KU Leuven R & D

STEREO Meeting

Overview

- > IRENA Operation
 - goals and objectives
 - analytical approach and evaluation
- > Agriculture and the environment
- > IRENA indicators utilising remote sensing
 - Land use
 - Land cover
 - Landscape
- > Some reflections

Introduction to IRENA

Indicator Reporting on the integration of ENvironmental concerns into Agricultural policy

- Response to Cardiff Process to integrate environmental concerns into policy
- Collaboration between 5 DGs/Agencies of the European Commission:
 - DG Agriculture, DG Environment, Eurostat, Joint Research Centre, European Environment Agency
- First Phase: 2003 2005

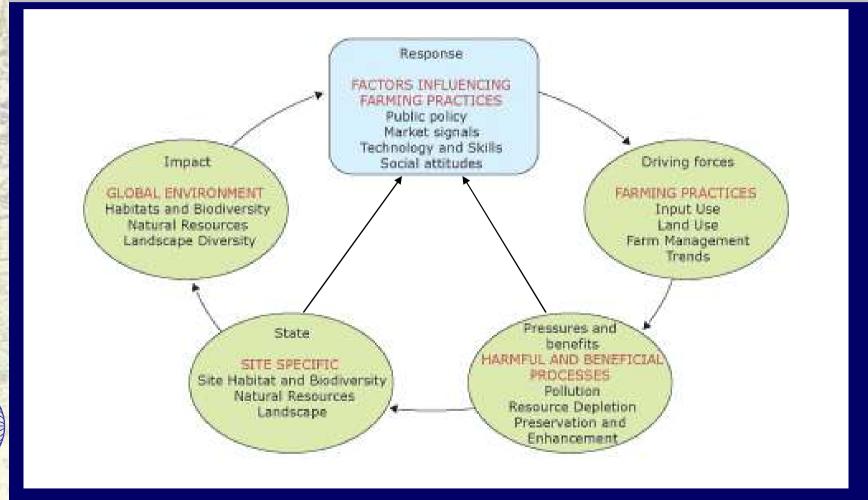
IRENA's Operational Objectives

- improve, develop and compile the 35 agrienvironmental indicators listed in COM(2000) 20 + COM(2001) 144
- compute regional indicators (NUTS 2/3 level) (data permitting) for EU-15
- > assess the integration of environmental concerns into CAP based on IRENA indicators

STEREO Meeting

IRENA's Deliverables

- The indicator fact sheets (41) and data http://webpubs.eea.eu.int/content/irena/index.htm
- > 'Agriculture and environment in EU-15 the IRENA indicator report'
- > 'Assessing the integration of environmental concerns into EU agriculture policy the IRENA integration report'
- > 'IRENA Operation evaluation report'



Indicator approach

- Farm Structure Survey (agricultural census), Eurowaternet (monitoring network), Natura 2000, MARS database, European soil database
- Regional models, spatial assessments (GIS), statistical analysis
- > Integrated assessments using DPSIR framework

Driving forces - Pressures -State - Impact - Response

Integrated assessments using DPSIR framework

Key agri-environmental story lines

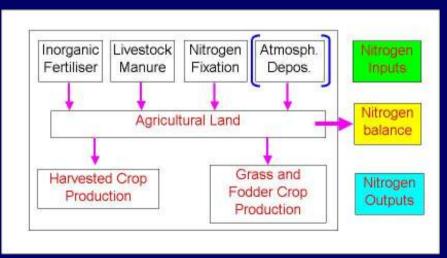
- > General trends in European agriculture
- > Agricultural water use and water resources
- > Agricultural fertiliser and pesticide use and the state of water quality
- > Land use and soil
- > Climate change and air quality
- > Landscape and biodiversity

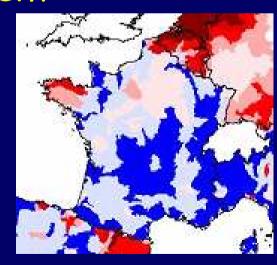
Why do we look at agriculture?

- Manages 50 % of land area;
- Has shaped large parts of our landscapes and biodiversity;
- Key sector for soil and water resources;
- Link to climate change and bio-energy;
- > Food and health...

Why is agriculture policy important?

- Food is essential to everyone;
- Farming provides 2-5 % of employment, up to 20 % in new Member States;
- Agricultural subsidies make up 40 % of agricultural income;
- CAP takes up 50 % of EU budget;
- Policy framework influences environmental management choices of farmers.


The problem...


- Farming is intensifying;
- Divorce of farming practices from nature management;
- Strong environmental pressures (pollution, biodiversity, natural resources);
- Environmental integration is required.

Agriculture and the environment

- Concerned with both the state of the environment and changes to it
- Most environmental outcomes attributed to the interplay of agricultural management with the natural environment

Assessments problematical.....

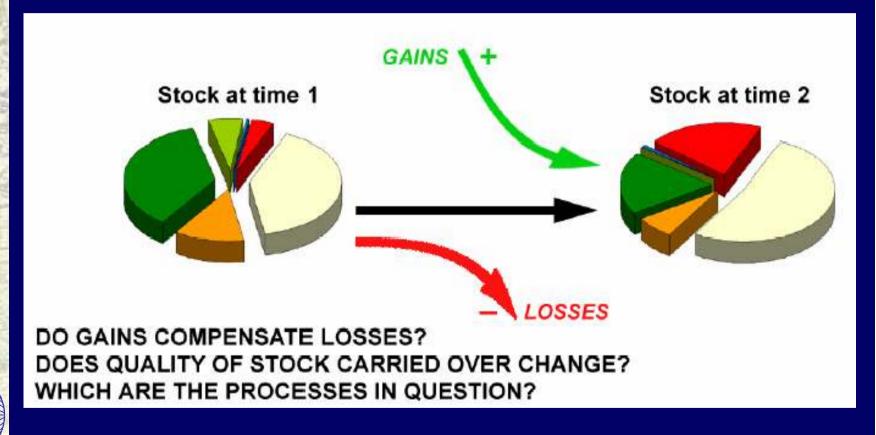
- Interplay of agricultural management with the natural environment more complex than in many other sectors
 - ·Varies over time
 - Varies between locations
- > Natural systems are involved
- > Variables such as climate are significant

IRENA Indicators utilising remote sensing

- > Land use and land cover change
- > Agricultural landscapes
 IMAGE 2000 CORINE Land Cover

Land use change indicator

- ➤ Indicates the area of land use change from agriculture to artificial surfaces (1990 to 2000) represents process of soil sealing
 - Socio-economic consequences
 - higher land prices
 - more restricted access to land
 - Environmental consequence
 - restricts animal movement
 - loss of biodiversity
 - increased water runoff
 - changes to agricultural landscapes

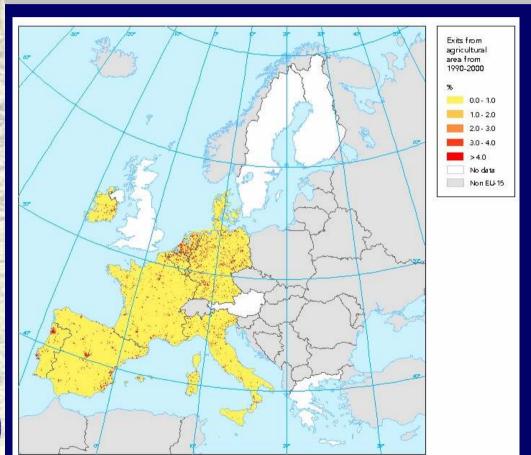


Land cover change indicator

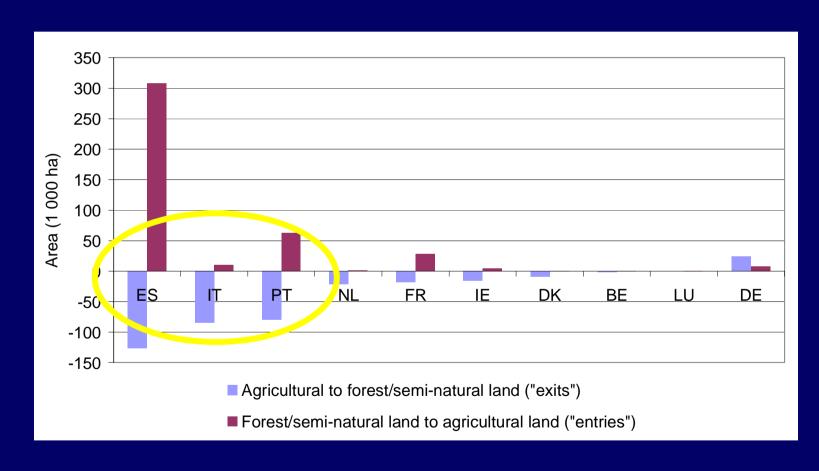
- Entries and exits to and from agricultural and forest/'semi-natural' land
 - Changes could indicate agricultural land abandonment, the introduction of agroforestry, expansion of forest plantations, or expansion of nature conservation schemes
- > Land cover changes within agriculture
 - Changes could indicate shift in agricultural practices (e.g. pasture to arable)

Analysis based on land accounting

Regional land use and land cover change indicators for Ireland

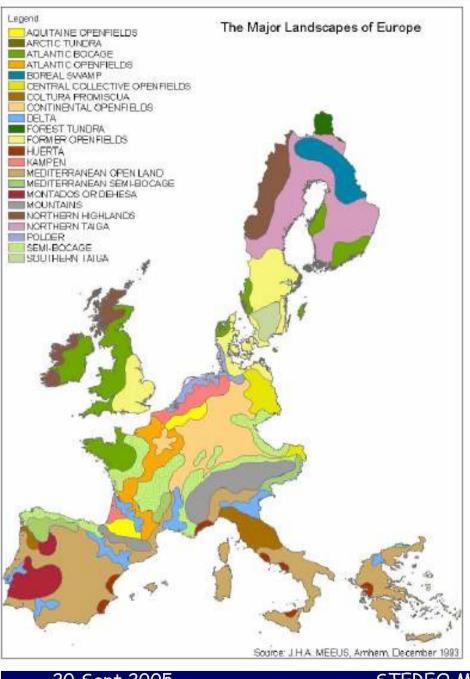

Land use change

Land cover change


Land use change - agriculture to artificial surfaces

- change in land use from agriculture to artificial surfaces ranged from 2.9% in the Netherlands to 0.3% in France.
- > most change in urban and coastal regions

Area of exits and entries from agriculture to natural/'semi-natural'land



20 Sept 2005

Landscape indicators

- > shows the variety of agricultural landscapes across Europe by analysing selected landscape parameters (presence of crops, linear elements, and patch density) with strong links to agricultural land use.
- > Case study approach

Landscapes of Europe (Meeus 1990)

Tundra

Taiga

Uplands

Bocage

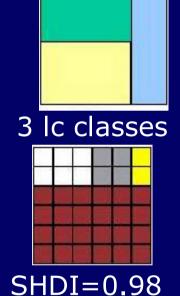
Open Fields

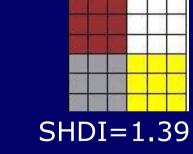
Regional Landscapes

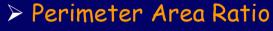
Artificial landscapes

SADL

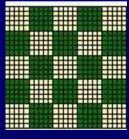
STEREO Meeting

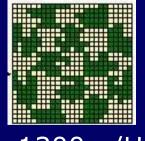

Landscape metrics


> Number of land cover classes


Measure of richness (number of classes), but no measure of class area distribution

Shannon Diversity Index


Measure of richness (number of classes) and evenness (area distribution)



Measures the complexity of the shape of classes, but is rather scale dependent

STEREO Meeting

3 lc classes

1300m/HA

20 Sept 2005

Some reflections....

What makes a good agrienvironmental indicator?

- > Policy relevance
- Responsiveness

20 Sept 2005

- > Analytical soundness
- Data availability and measurability
- > Ease of interpretationclear message???
- > Cost effectivenessvalue for money??

SADL

STEREO Meeting

....useful?

.....sensitive??

.....causal effect??

.....feasible, scale??

Land cover, land use and landscape agri-environmental indicators developed during the IRENA Operation

Dr. Paul Campling
Spatial Applications
Division Leuven,
KU Leuven R & D

STEREO Meeting