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What is "ill-posed inverse

= Categorical variables
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What is "ill-posed inverse

= Continuous variables
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The ill-posed inverse problem illustrated in the red-nIR feature
space. LAl-isolines range from 0 (bare soil) to LAI=5 in steps of
0.5 (SAILH+PROSPECT simulations) (Atzberger, 2004)



What is "ill-posed inverse

= Continuous variables
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The ill-posed inverse problem illustrated for a Landsat-TM sensor. 15 different parameter combinations
lead to * similar canopy reflectance spectra (SAILH+PROSPECT simulations) (Atzberger, 2003)
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What is "ill-posed inverse

= Continuous variables
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dense, erectophile ? sparse, planophile ?

@ If different model parameters lead to similar spectral signatures, it is also difficult to retrieve the correct

vegetation characteristics from measured spectra
ITE
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Problem description

= Terminology - Radiative transfer models
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lllustration of radiative transfer models. The scattering and absorption of EMR is modelled by applying

physical principles. From given canopy characteristics, the TOC reflectance is simulated. No analytical
solution for the inverse problem exist (source: web)




Problem description

= Terminology - Radiative transfer models

leaf
charictensncs

M, Cab, Cw

canupy leaf sl
struchure reflectance reflectmen
LATL &l BrARS I ATICE

" e

1LCASL FEILCTLT
o characteristics
1 view and sun peomerries
liffuse illvmination fraction

e

spectral
CATIL
reflectance

lllustration of the coupled SAILH+PROSPECT radiative transfer model for plant canopies.
The entire wavelength range (400-2500 nm) is modelled using only a few parameters
@ (from Jacquemoud, 1993)



Problem description

= Terminology - Forward modelling

Forward modelling: Input of measured canopy biophysical characteristics into the radiative
transfer model to simulate the spectral properties of the canopy



Problem description

= Terminology - Forward modelling
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Forward modelling: Input of measured canopy biophysical characteristics to simulate spectral
properties of an oak canopy - Comparison with measured spectra (DAIS-7915) (Atzberger, 1999)



Problem description

= Terminology - Inverse modelling
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@ Model inversion by matching of measured and modelled spectra (from Verhoef & Bach, 2003)




Problem description

= Terminology - Inverse modelling
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LAl retrieval through inversion of SAILH+PROSPECT radiative transfer model (left) compared to traditional NDVI
(right) (Atzberger et al., 2004)
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Problem description

= Terminology - Numerical inversion
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lllustration of error criteria, initial guess, global and local minima. Starting from an initial guess (P), the
search algorithm tries to find the model variable(s) leading to the smallest error (Mg) between measured and
simulated reflectance. The search algorithm may get trapped in a local minima (Ml) and never reaches the
global minima (Mg) (source: web)




Problem description

= Reasons for the ill-posed inverse problem
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Model simulations reveal that LAI (left) and average leaf angle (ALA) (right) have more or less similar
effects on simulated canopy reflectance (from Jacquemoud et al., 1995)
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Problem description

= Assessing the ill-posed inverse problem
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one model parameter (here: ALA) to a false value (here: ALA + A ALA). If the solution is ill-posed, the wrong

The ill-posed inverse problem can be easily assessed. A spectrum is simulated and then inverted, while fixing
@ model parameter will be compensated by another parameter (here: LAl), whereas the residual errors remain low.



Strategies for solving the ill-
posed inverse problem
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Strategies for solving the

= Sensor improvements
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Strategies for solving the p

= Sensor improvements
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Field experiments reveal that canopy integrated chlorophyll content (LAl x CAB) is better retrieved (PLS
regression) using hyperspectral information (left) compared to multi-spectral information (right) (Atzberger
et al., 2004)
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Strategies for solving the pro

= Sensor improvements

The better the radiometric quality of the spectral signature (SNR, calibration, atmospheric correction), the
higher the accuracy of the retrieval of biophysical variables (source: web)

ITC



Strategies for solving the

* |Increasing the dimensionality of the data
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@ The ill-posed problem can be considerably reduced by increasing the dimensionality of the data set — here:
combining spectral and directional data (source: web)




Strategies for solving the p

* |Increasing the dimensionality of the data
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The ill-posed problem can be considerably reduced by increasing the dimensionality of the data
set — here: by combining optical and microwave data sets (source: web)



Strategies for solving the pro
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* |Including (external) prior information

spectral prior
info info

The error surface can be better reshaped and restricted, if
externally derived prior information is available (e.g. land cover
classification yielding information on plant architecture) (Schlerf,
Atzberger & Hill, 2002)




Strategies for solving the p

* |Including (external) prior information
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The number of variables to be retrieved can be reduced if some variables can be mapped from other EO
data (e.g. stem density derived from BW orthophotos) (Atzberger & Schlerf, 2002)



Strategies for solving the

* |Including (external) prior information
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Lidar detéction of canopy height and architactura

@ The number of variables to be retrieved can be reduced if some variables can be mapped from other EO
ITC data (e.g. canopy height and architecture from LIDAR measurements) (source: web)



Strategies for solving the p

= Exploiting the temporal consistency
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Strategies for solving the p

= Exploiting the spatial consistency
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Principle of the object-based approach for solving the ill-posed inverse problem. Image objects (e.g. agricultural

fields) have unknown leaf architectures. However, it can be assumed that the leaf architecture within a given
image object is more or less similar. This leads to distinctive spectral clusters (Atzberger, 2004)



Strategies for solving the pr¢

= Exploiting the spatial consistency
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lllustration of the genesis of distinctive spectral clusters in the red-nIR feature space (Atzberger, 2004)




Strategies for solving the pr¢

= Exploiting the spatial consistency
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Coefficient of determination (R2) between true and retrieved canopy variables as a function of the number
of neurons in the hidden layer for the object based model inversion (black line) and the traditional inversion
(gray line) (Atzberger, 2004)



Conclusions
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Conclusions

= Accuracy of RTM of uppermost importance

= Combined RTM have high potential
= External prior information very useful

= Temporal & spatial consistency should be
taken into account
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