Evaluation of the MERIS Terrestrial Chlorophyll Index

Paul Curran & Jadunandan Dash
University of Southampton
United Kingdom
Remote sensing of vegetation

What is it?
MERIS: *individual bands*, classify

How much is there?
MERIS: *MGVI (fAPAR-LAI)* ESA level 2 product

What condition is it in?
MERIS: *MTCI (chlorophyll content)* ESA level 2 product
Red edge position (REP):

- links remotely sensed data and chlorophyll content
- is defined as the point of maximum slope of the curve in red / near infrared region
MEdium Resolution Imaging Spectrometer (MERIS)

- Onboard ESA’s Envisat
- 15 programmable bands in region of 390-1040nm
- Pushbroom imaging spectrometer
- 1150km swath on ground
- Two spatial resolutions
 - Full resolution (FR)-300m
 - Reduced resolution (RR)-1200m
- Global coverage in 3 days
MERIS to estimate REP at a landscape scale

We have

- *Large volumes* of discontinuous spectral data
- *High variation* in chlorophyll values

We require

- *Unique* value for an index
- *Automation*

Problems with REP estimation techniques in literature

- Designed for small volumes of continuous spectral data
- Insensitive to high chlorophyll values
- REP value depends on technique used
- Two-step process, requires user intervention
In some respects MERIS is well suited for high SNR (around 600:1 in blue wavelengths to around 250:1 in near-infrared wavelengths over vegetation) and well-placed wavebands.

<table>
<thead>
<tr>
<th>Band no</th>
<th>Central wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>412.5</td>
</tr>
<tr>
<td>2</td>
<td>442.5</td>
</tr>
<tr>
<td>3</td>
<td>490</td>
</tr>
<tr>
<td>4</td>
<td>510</td>
</tr>
<tr>
<td>5</td>
<td>560</td>
</tr>
<tr>
<td>6</td>
<td>620</td>
</tr>
<tr>
<td>7</td>
<td>665</td>
</tr>
<tr>
<td>8</td>
<td>681.25</td>
</tr>
<tr>
<td>9</td>
<td>708.75</td>
</tr>
<tr>
<td>10</td>
<td>753.75</td>
</tr>
<tr>
<td>11</td>
<td>760.625</td>
</tr>
<tr>
<td>12</td>
<td>778.75</td>
</tr>
<tr>
<td>13</td>
<td>865</td>
</tr>
<tr>
<td>14</td>
<td>885</td>
</tr>
<tr>
<td>15</td>
<td>900</td>
</tr>
</tbody>
</table>

Position of MERIS standard band setting on a vegetation reflectance spectrum.
Designing the MERIS Terrestrial Chlorophyll Index (MTCI)

Requirements:

(i) Easy to calculate from MERIS data

(ii) Sensitive to wide range of chlorophyll contents
Equation

\[MTCl = \frac{R_{Band10} - R_{Band9}}{R_{Band9} - R_{Band8}} = \frac{R_{753.75} - R_{708.75}}{R_{708.75} - R_{681.25}} \]
Preliminary evaluation

Model
- LIBSAIL (LIBERTY + SAIL)
- Reflectance from 400-2500 nm
- Averaged to get the MERIS standard band setting

Field
- Collected for Maple and Douglas-fir (NASA ACCP 1992-93)
- Canopy spectral reflectance (400-2500nm)
- Canopy chlorophyll content

MERIS
- Study area: New Forest, Hampshire, UK
- Acquisition date 19 October 2002
- Top-of-canopy reflectance
Model results
Field results

Using MERIS standard band setting data for Douglas-fir
Using continuous spectra for Douglas-fir
Using MERIS standard band setting data for maple
Using continuous spectra for maple
MERIS results

- NDVI
- REP
- MTCI

Min	Max

Color scale for data representation.
MERIS results

The left side of the image shows a map with various land use categories: Woodland, Urban, Meadows & Agricultural land, and Heath. The right side displays a scatter plot with two distinct clusters representing Heath and Woodland, plotted against REP (nm) and NDVI.
Observed Issues and Recommendations

New L2 products

- Need for defining new L2 land products by fully exploiting the capabilities of the MERIS instrument not available from other sensors.
 - ESA response:
 - for the land community at present we have MGVI, NDVI, rectified reflectances at 665 and 865nm, DDV AOT, surface pressure.
 - **new MERIS Terrestrial Chlorophyll Index (MTCI) will be provided in the L2 product** replacing the NDVI.
 - algorithms for experimental MERIS products, i.e. LAI, fraction cover, chlorophyll content, surface reflectance under development; shall be made available in source code under the BEAM software.

- Need for defining new atmospheric L2 products:
 - Aerosol path radiance at 665 nm
 - Particular Matter: PM 10
 - Aktinic fluxes
Background to preliminary evaluation:

Four evaluations underway at Southampton University

Experiments – greenhouse, field
Time series – four sites
Surrogate chlorophyll content – Vietnam
Non-canopy variables – simulations
Experiments – greenhouse experiment
spinach, low / medium / high levels of fertilization,
weekly chlorophyll content and MTCI measurement
field experiment
grassland, low / medium / high levels of fertilization,
monthly chlorophyll content and MERIS MTCI measurement

Time series – four sites (joint with JRC Ispra)
Hainich
Country: Germany
Site: Hardwood forest
Dominant species: Beech
Loobos
Country: Netherlands
Site: Coniferous forest
Dominant species: Scots Pine

![Graph of MTCI over Julian days](image-url)
New Forest
Country: United Kingdom
Site: Mixed forest
Dominant species: Oak, Pine, Heath
Pavia
Country: Italy
Site: Agriculture
Dominant species: Rice

MTCJ vs Julian days graph
Surrogate chlorophyll content

Aims

(i) Determine relationship between Agent Orange deposition and current MTCI in forests

(ii) Identify defoliation hotspots

Inputs

(i) MERIS images covering southern Vietnam

(ii) Agent Orange data (HERBS files)

(iii) Land cover and topography
Surrogate chlorophyll content
Surrogate chlorophyll content

- Initial results for 10 provinces: negative relationship between Agent Orange deposition and MTCI

- Further per-pixel investigation of the Agent Orange deposition / MTCI relationship is underway for large forest regions
Non-canopy variables: use a mix of leaf / vegetation canopy / atmospheric models and MERIS data to investigate the effects of the following on the MTCI / chlorophyll content relationship

- Spatial resolution
- Soil brightness
- Atmospheric scattering
- Atmospheric absorption
- Solar & sensor angle / azimuth
Conclusions

- The MTCI is the second of two land products from MERIS
- MTCI is conceptually simple and is related to chlorophyll content; chlorophyll content is, in turn, related to vegetation condition
- Evaluations, preliminary and ongoing are encouraging
- Prediction: remote sensing conferences in 2005 / 6 will see further evaluations of the MTCI