

## **Evaluation of the MERIS Terrestrial Chlorophyll Index**

Paul Curran & Jadunandan Dash University of Southampton United Kingdom



#### Remote sensing of vegetation

What is it?

MERIS: individual bands, classify

How much is there?

MERIS: MGVI (fAPAR-LAI) ESA level 2 product

What condition is it in?

MERIS: MTCI (chlorophyll content) ESA level 2 product



Remote
Sensing
Data

Chlorophyll
Content
Condition

## Environmental Understanding

- Nutrient cycling
- Carbon budgets
- Productivity

### Environmental Management

- Crop productivity
- Fertilizer treatment
- Biodiversity preservation



#### Red edge position (REP):

- links remotely sensed data and chlorophyll content
- is defined as the *point of maximum slope* of the curve in red / near infrared region





#### **MEdium Resolution Imaging Spectrometer (MERIS)**

- ➤ Onboard ESA's Envisat
- ➤ 15 programmable bands in region of 390-1040nm
- ➤ Pushbroom imaging spectrometer
- ➤ 1150km swath on ground
- > Two spatial resolutions
  - Full resolution (FR)-300m
  - Reduced resolution (RR)-1200m
- ➤ Global coverage in 3 days



#### MERIS to estimate REP at a landscape scale

We have

- *Large volumes* of discontinuous spectral data
- *High variation* in chlorophyll values

We require

- *Unique* value for an index
- Automation

Problems with REP estimation techniques in literature

- Designed for small volumes of continuous spectral data
- Insensitive to high chlorophyll values
- REP value depends on technique used
- Two-step process, requires user intervention



## In some respects MERIS is well suited ▶ high SNR (around 600:1 in blue wavelengths to around 250:1 in near-ir wavelengths over vegetation) ▶ well-placed wavebands

|   | Band no | Central wavelength (nm) |
|---|---------|-------------------------|
|   | 1       | 412.5                   |
|   | 2       | 442.5                   |
|   | 3       | 490                     |
|   | 4       | 510                     |
|   | 5       | 560                     |
|   | 6       | 620                     |
|   | 7       | 665                     |
|   | 8       | 681.25                  |
|   | 9       | 708.75                  |
| 1 | 10      | 753.75                  |
|   | 11      | 760.625                 |
|   | 12      | 778.75                  |
|   | 13      | 865                     |
|   | 14      | 885                     |
|   | 15      | 900                     |
|   |         |                         |



Position of MERIS standard band setting on a vegetation reflectance spectrum

#### **Designing the MERIS Terrestrial Chlorophyll Index (MTCI)**

#### Requirements:

- (i) Easy to calculate from MERIS data
- (ii) Sensitive to wide range of chlorophyll contents



# Equation 1

$$MTCI = \frac{R_{Band10} - R_{Band9}}{R_{Band9} - R_{Band8}} = \frac{R_{753.75} - R_{708.75}}{R_{708.75} - R_{681.25}}$$





#### **Preliminary evaluation**



- •LIBSAIL (LIBERTY +SAIL)
- •Reflectance from 400-2500 nm
- •Averaged to get the MERIS standard band setting

#### Field



- •Collected for Maple and Douglas-fir (NASA ACCP 1992-93)
- •Canopy spectral reflectance (400-2500nm)
- •Canopy chlorophyll content

#### **MERIS**



- •Study area: New Forest, Hampshire, UK
- Acquisition date19 October 2002
- •Top-of-canopy reflectance



#### Model results





#### Field results







#### **MERIS** results









#### Observed Issues and Recommendations

#### New L2 products

- Need for defining new L2 land products by fully exploiting the capabilities of the MERIS instrument not available from other sensors.
  - > ESA response:
  - for the land community at present we have MGVI, NDVI, rectified reflectances at 665 and 865nm, DDV AOT, surface pressure.
  - new MERIS Terrestrial Chlorophyll Index (MTCI) will be provided in the L2 product replacing the NDVI.
  - algorithms for experimental MERIS products, i.e.LAI, fraction cover, chlorophyll content, surface reflectance under development; shall be made available in source code under the BEAM software
- Need for defining new atmospheric L2 products:
  - · Aerosol path radiance at 665 nm
  - · Particular Matter: PM 10
  - · Aktinic fluxes



#### **Background to preliminary evaluation:**

Dash, J. & Curran, P.J. (2004) The MERIS terrestrial chlorophyll index. *International Journal of Remote Sensing*, 25 (autumn).

#### Four evaluations underway at Southampton University

Experiments – greenhouse, field

*Time series* – four sites

Surrogate chlorophyll content – Vietnam

*Non-canopy variables* – simulations



#### **Experiments** – greenhouse experiment

spinach, low / medium / high levels of fertilization, weekly chlorophyll content and MTCI measurement

field experiment

grassland low / medium / high

grassland, low / medium / high levels of fertilization, monthly chlorophyll content and MERIS MTCI measurement

*Time series* – four sites (joint with JRC Ispra)



#### University of Southampton

#### **New Forest**

**Country: United Kingdom** 

**Site: Mixed forest** 

**Dominant species: Oak, Pine, Heath** 

#### Hainich

Country: Germany
Site: Hardwood forest
Dominant species: Beech

#### Loobos

**Country: Netherlands** 

**Site: Coniferous forest** 

**Dominant species: Scots Pine** 

#### **Pavia**

Country: Italy
Site: Agriculture

**Dominant species: Rice** 



# Hainich Country: Germany Site: Hardwood forest Dominant species: Beech







#### Loobos

Country: Netherlands
Site: Coniferous forest
Dominant species: Scots Pine





#### **New Forest**

Country: United Kingdom
Site: Mixed forest
Dominant species: Oak, Pine, Heath







#### **Pavia**

Country: Italy
Site: Agriculture
Dominant species: Rice







#### Surrogate chlorophyll content

#### Aims

- (i) Determine relationship between Agent Orange deposition and current MTCI in forests
- (ii) Identify defoliation hotspots

#### **Inputs**

- (i) MERIS images covering southern Vietnam
- (ii) Agent Orange data (HERBS files)
- (iii) Land cover and topography



#### Surrogate chlorophyll content



#### Surrogate chlorophyll content

- Initial results for 10
   provinces: negative
   relationship between
   Agent Orange deposition
   and MTCI
- Further per-pixel investigation of the Agent Orange deposition / MTCI relationship is underway for large forest regions





**Non-canopy variables:** use a mix of leaf / vegetation canopy / atmospheric models and MERIS data to investigate the effects of the following on the MTCI / chlorophyll content relationship

- Spatial resolution
- Soil brightness
- Atmospheric scattering
- Atmospheric absorption
- Solar & sensor angle / azimuth

#### **Conclusions**

- The MTCI is the second of two land products from MERIS
- MTCI is conceptually simple and is related to chlorophyll content; chlorophyll content is, in turn, related to vegetation condition
- Evaluations, preliminary and ongoing are encouraging
- Prediction: remote sensing conferences in 2005 / 6 will see further evaluations of the MTCI