Airborne Imaging Spectroscopy Workshop 8 Oct 2004 - Bruges - Belgium

BruHyp'04

Stress Detection in Crops with Hyperspectral Remote Sensing and Physical Simulation Models

P. J. Zarco-Tejada A. Berjón J.R. Miller Institute for Sustainable Agriculture / Higher Research Council (Spain) GOA-UVA, University of Valladolid, Spain York University, Canada

IAS/CSIC

GOA-UVA

York University

Outline

1. Introduction & Rationale

2. Data Collection and Processing

3. C_{ab} estimation using combined Optical Indices and Radiative Transfer Simulation

4. Results

5. Conclusions

1. Introduction

The European Union occupies a world leading position on the two highvalue crops

• EU is the largest olive oil producer with 50% of the area in Spain and 25% in Italy

• The EU wine market accounts for 45% of wine-growing areas, world leader in terms of area, production and consumption

Radiative Transfer-based methods can be used to interpret hyperspectral imagery to estimate biochemical / biophysical variables in olive and vine canopies:

- Leaf chlorophyll a+b (C_{a+b})
- Dry matter content (C_m)
- Water content (C_w)
- Leaf Area Index (LAI)
- Percent cover

indicators of stress and growth

Differences in

- crown shape & density
- soil properties
- canopy geometry
- large effect of shadows

BRDF signature for vine canopy

Outline

1. Introduction & Rationale

2. Data Collection and Processing

3. Cab estimation using combined Optical Indices and Radiative Transfer Simulation

4. Results

5. Conclusions

Olive & Vine Leaf Reflectance & Transmittance measurements

Olive $\rho \& \tau$

Vine p

Vegetation Index	Equation	Reference

Structural Indices

Normalized Difference Vegetation Index (NDVI)	$NDVI = (R_{NIR} - R_{red})/(R_{NIR} + R_{red})$	Rouse et al. (1974)
Modified Triangular Vegetation Index (MTVI1)	$MTVI1 = 1.2 * \left[1.2 * (R_{800} - R_{550}) - 2.5 * (R_{670} - R_{550}) \right]$	Haboudane et al. (2004)
Modified Triangular Vegetation Index (MTVI2)	$MTVI2 = \frac{1.5 * [1.2 * (R_{800} - R_{550}) - 2.5 * (R_{670} - R_{550})]}{\sqrt{(2 * R_{800} + 1)^2 - (6 * R_{800} - 5 * \sqrt{R_{670}}) - 0.5}}$	Haboudane et al. (2004)
Renormalized Difference Vegetation Index (RDVI)	$RDVI = (R_{800} - R_{670}) / \sqrt{(R_{800} + R_{670})}$	Rougean and Breon, (1995)
Simple Ratio Index (SR)	$SR = R_{NIR}/R_{red}$	Jordan (1969); Rouse <i>et al.</i> (1974)
Modified Simple Ratio (MSR)	MSR = $\frac{R_{NIR} / R_{red} - 1}{(R_{NIR} / R_{red})^{0.5} + 1}$	Chen (1996)
Modified Chlorophyll		
Absorption in Reflectance Index (MCARI ₁)	$MCARI1 = 1.2 * \left[2.5 * (R_{800} - R_{670}) - 1.3 * (R_{800} - R_{550}) \right]$	Haboudane et al. (2004)
Modified Chlorophyll Absorption in Reflectance Index (MCARI ₂)	$MCARI2 = \frac{1.5 * [2.5 * (R_{800} - R_{670}) - 1.3 * (R_{800} - R_{550})]}{\sqrt{(2 * R_{800} + 1)^2 - (6 * R_{800} - 5 * \sqrt{R_{670}}) - 0.5}}$	Haboudane et al. (2004)
Soil Adjusted Vegetation Index	$SAVI = (1+L)*(R_{800}-R_{670})/(R_{800}+R_{670}+L)$	Huete (1988)
(SAVI)	[L ε (0,1)]	Qi et al. (1994)
Improved SAVI with self- adjustment factor L (MSAVI)	$MSAVI = \frac{1}{2} \left[\frac{2 * R_{800} + 1 - \sqrt{(2 * R_{800} + 1)^2 - 8 * (R_{800} - R_{670})}}{2 * R_{800} + 1 - \sqrt{(2 * R_{800} + 1)^2 - 8 * (R_{800} - R_{670})}} \right]$	Qi et al. (1994)
Optimized Soil-Adjusted Vegetation Index (OSAVI)	$OSAVI = (1 + 0.16) * (R_{800} - R_{670}) / (R_{800} + R_{670} + 0.16)$	Rondeaux et al. (1996)

Chlorophyll Indices

Greenness Index (G)	$G = (R_{554})/(R_{677})$	-
Modified Chlorophyll Absorption in Reflectance Index (MCARI)	$\begin{aligned} \text{MCARI} &= [(R_{700} - R_{670}) - 0.2 * (R_{700} \\ - R_{550})] * (R_{700} / R_{670}) \end{aligned}$	Daughtry <i>et al</i> . (2000)
Transformed CARI (TCARI)	$TCARI = 3 * [(R_{700} - R_{670}) - 0.2 * (R_{700} - R_{550}) * (R_{700} / R_{670})]$	Haboudane et al (2002)
Triangular Vegetation Index (TVI)	$TVI = 0.5 * \left[120 * (R_{750} - R_{550}) - 200 * (R_{670} - R_{550}) \right]$	Broge and Leblanc (2000)
Zarco-Tejada & Miller	$ZTM = (R_{750})/(R_{710})$	Zarco-Tejada et al. (2001)

Water Indices

Normalized Difference Water Index (NDWI)	NDWI=(R_{860} - R_{1240})/ (R_{860} + R_{1240})	Gao, (1996)
Simple Ratio Water Index (SRWI)	SRWI=R ₈₅₈ /R ₁₂₄₀	Zarco-Tejada et al., (2003)
Plant Water Index (PWI)	$PWI = R_{970}/R_{900}$	Peñuelas <i>et al.</i> (1997)

2	$\lambda_{\rm pr} = \lambda_{\rm max[680-750]} \lambda_{\rm p1g} = \lambda_{\rm max[500-600]}$	<i>Hare et al.</i> (1984);
Λp	$\lambda_{p2g} = \lambda_{min[500-600]}$	Bonham-Carter (1988)
P	$\mathbf{P} = \mathbf{P}$	<i>Hare et al.</i> (1984);
N ₀	$\mathbf{R}_{0} - \mathbf{R}_{\min[650-700]}$	Bonham-Carter (1988)
Р	$\mathbf{D} = \mathbf{D}$	<i>Hare et al.</i> (1984);
$\mathbf{K}_{\mathbf{S}}$	$\mathbf{K}_{\mathrm{s}} - \mathbf{K}_{\mathrm{max}[700-770]}$	Bonham-Carter (1988)
	σ = shape parameter as defined by	<i>Hare et al.</i> (1984);
0	the inverted-gaussian curve-fit model	Bonham-Carter (1988)

Red Edge Spectral Parameters

Simple Ratio Pigment Index (SRPI)	$SRPI = (R_{430})/(R_{680})$	Peñuelas et al. (1995)
Normalized Phaeophytinization Index (NPQI)	NPQI = $(R_{415} - R_{435})/(R_{415} + R_{435})$	Barnes et al. (1992)
Photochemical Reflectance Index (PRI)	$PRI_1 = (R_{528} - R_{567})/(R_{528} + R_{567})$ $PRI_2 = (R_{531} - R_{570})/(R_{531} + R_{570})$	Gamon <i>et al.</i> (1992)
Normalized Pigment Chlorophyll Index (NPCI)	NPCI = $(R_{680} - R_{430})/(R_{680} + R_{430})$	Peñuelas <i>et al.</i> (1994)
Carter Indices	$Ctr1 = (R_{695})/(R_{420})$ $Ctr2 = (R_{695})/(R_{760})$	Carter (1994) Carter <i>et al.</i> (1996)
Lichtenthaler indices	Lic1 = $(R_{800} - R_{680})/(R_{800} + R_{680})$ Lic2 = $(R_{440})/(R_{690})$ Lic3 = $(R_{440})/(R_{740})$ Lic4 = $\int_{450}^{680} R$	Lichtenthaler et al. (1996)
Structure Intensive Pigment Index (SIPI)	$SIPI = (R_{800} - R_{450}) / (R_{800} + R_{650})$	Peñuelas <i>et al.</i> (1995)
Vogelmann indices	$Vog1 = (R_{740})/(R_{720})$ $Vog2 = (R_{734} - R_{747})/(R_{715} + R_{726})$ $Vog3 = (R_{734} - R_{747})/(R_{715} + R_{720})$ $Vog4 = D_{715}/D_{705}$	Vogelmann <i>et al</i> . (1993); Zarco-Tejada <i>et al</i> . (1999)
Gitelson and Merzlyak	$G_M1 = (R_{750})/(R_{550})$ $G_M2 = (R_{750})/(R_{700})$	Gitelson and Merzlyak (1997)
Curvature Index (Fluorescence)	$CUR = (R_{675} \cdot R_{690}) / (R_{683}^2)$	Zarco-Tejada et al. (2000)
Double-Peak Ratio Indices	$\begin{aligned} DPR1 &= D_{\lambda p[680-750]}/D_{\lambda 0+12} \\ DPR2 &= D_{\lambda p[680-750]}/D_{\lambda 0+22} \\ DP21 &= D_{\lambda p[680-750]}/D_{703} \\ DP22 &= D_{\lambda p[680-750]}/D_{720} \end{aligned}$	Zarco-Tejada et al. (2001)
Area Red Edge Peak (ADR)	$ADR = \int_{680}^{760} D$	Zarco-Tejada <i>et al.</i> (2001)

Relationships between C_{ab} , C_{x+c} & Indices at Leaf Level in Vines

Leaf and Canopy RT models

Leaf Level

Canopy model

Study Areas Vineyards (I)

VH6,VH5,VC2

VH7

Study Areas Vineyards (II)

VC7

VC3,VC5

Study Areas Vineyards (III)

VC4

VH6

Study Areas Vineyards (IV)

8 bands, 4-12 nm FWHM1 m spatial resolution

72 bands, 7.5 nm FWHM4 m spatial resolution

Q₁^{*}(Q Fe 2.3 o-o)

81	121	111	101	91
82	122	112	102	92
93	83	123	113	103
94	84	124	114	104
105	95	85	125	115
106	96	86	126	116
117	107	97	87	127
118	108	98	88	128
129	119	109	99	89
130	120	110	100	90

158	155		152	149		146	143		140	137		134	138	
159	156		153	150		147	144		141	138		135	132	
160	157		154	151		148	145		142	139		136	133	
161	165		167	168		169	171		173	175		179	180	
162	166		163	164		170	172		174	176		177	178	

Outline

1. Introduction & Rationale

2. Data Collection and Processing

3. C_{ab} estimation using combined *Optical Indices* and *Radiative Transfer* Simulation

4. Results

5. Conclusions

Combined Indices for C_{ab} Estimation with PROSPECT+SAILH

- **CARI** \rightarrow minimize effects of non-photosynthetic materials
- ⇒ MCARI → depth of chlorophyll absorption at 670 nm relative to the reflectance at 550 nm and 700 nm still sensitive to non-photosynthetic element effects

MCARI =
$$[(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550})] \cdot \left(\frac{R_{700}}{R_{670}}\right)$$

 \rightarrow **TCARI** \rightarrow improving its sensitivity at low chlorophyll values

TCARI =
$$3 \cdot \left[(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot \left(\frac{R_{700}}{R_{670}}\right) \right]$$

Influence by soil reflectance for low values of LAI \rightarrow OSAVI minimizes soil effects with MCARI OSAVI = $(1+0.16) \cdot \left[\frac{R_{800} - R_{670}}{R_{800} + R_{670} + 0.16} \right]$

TCARI/OSAVI

(Haboudane et al., 2002)

rowMCRM → addition of row structure to MCRM model

Model simulation of row-structured discontinuous canopies with rowMCRM radiative transfer model (left). Vineyard canopy reflectance simulation as function of the visible strip length in the row crop (St=0.5, 1m, 1.5m and 2m) (right).

Outline

1. Introduction & Rationale

2. Data Collection and Processing

3. C_{ab} estimation using combined Optical Indices and Radiative Transfer Simulation

4. Results

5. Conclusions

Olive Canopies

C_{ab} estimation from ROSIS crowns using MCARI/OSAVI prediction

Crowns PROSPECT-SAILH

Zarco-Tejada et al., 2004

C_{ab} estimation from aggregated pixels (C+Sh+So) using MCARI/OSAVI

Crown+Shadow+Soil PROSPECT-SAILH & PROSPECT-SAILH-FLIM

Vineyard Canopies

 C_{ab} estimation at canopy level by scaling up TCARI/OSAVI through PROSPECT + rowMCRM model

5. Conclusions

- 1. Leaf-level studies are required to identify indices related to variable of interest. Protocols for measuring leaf $\rho \& \tau$ are developed
- 2. Successful *scaling up* of indices from leaf to canopy requires physical methods to account for the canopy structure
- 3. We present a simulation method for *scaling up* combined indices MCARI/OSAVI for orchard and row-structured canopies:
 - PROSPECT-SAILH when targeting crowns
 - PROSPECT-SAILH-FLIM in aggregated pixels
 - PROSPECT-rowMCRM in row-structured crops
- 4. Successful estimation of C_{ab} in open canopies and row structured crops (olive groves and vineyards)
 ⇒ RMSE ~ 10 µg/cm²

Ejemplo de simulación RowSAIL de la reflectancia en vid para distintos marcos

3-D Canopy Model Simulation with SPRINT

Canopy Simulation using SPRINT RT model (Goel & Thompson, 2000)

_

Canopy structural parameters	Nominal Values
Tree density	1100 /ha
Distribution of trees	Poisson distribution
Crown shape	Irregular conical (assumed ellipsoidal)
Height of trunk	8.5 m
Height of tree	15.0 m
Trunk radius	8.3 cm
Crown radius	2.0 m
Leaf angle distribution	Assumed spherical
Shoot area	0.0008 m^2
Canopy effective LAI	2.5
Leaf area density	0.4171 /m
Leaf and shoot structural parameters	Nominal values and range
Leaf thickness	0.062 cm (0.057 - 0.076)
Specific Leaf Area (fresh leaves)	$20.9 \text{ cm}^2/\text{g} (17.9 - 23.7)$
Specific Leaf Area (dry weight) SLA	$48.1 \text{ cm}^2/\text{g} (37.7 - 58.6)$
Leaf biochemical parameters	Range of values
Chlorophyll <i>a</i>	1,037 to 2,715 $\mu g.g^{-1}$
Chlorophyll <i>b</i>	274 to 997 $\mu g.g^{-1}$
Chlorophyll $a + b$	1,286 to 3,588 $\mu g.g^{-1}$
Carotenoids	243 to 611 $\mu g.g^{-1}$
Water (% of dry mass)	97.3 to 179.3 (values expressed per DW,

usually expressed per total Fresh weight)

3-D Canopy Simulation using the SPRINT Radiative Transfer model for Olive Tree canopies

Simulated Crown Reflectance (PROSPECT-SAILH) with 3 soil spectra

ROSIS Crown Reflectance for all trees

ROSIS Extreme Soil Reflectance from sites

Predicting relationship for MCARI/OSAVI for all soils and LAI=0.5

Relationships between crown LAI and indices for Olive trees

