

10/09/2012

HeathReCover - Remote sensing support to assist ecological restoration management after heathland fires

Birgen Haest, Jeroen Vanden Borre, Toon Spanhove, Sander Veraverbeke, Luc Bertels, Stefaan Lhermitte, Marc Dufrêne, Martine Waterinckx and Geert De Blust

http://heathrecover.vgt.vito.be

HeathReCover – Administrative details

- » Project Period: Feb 2012 Dec 2013
- » Belspo co-funding project

» Partners:

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Milieu

HeathReCover – Project background

- » Heathlands and peat bogs ecosystems
 - » Highly valued landscapes of common European heritage
 - » Large investment of effort and resources to conserve and manage them
 - » Yet ... *under threat:*
 - » Anthropogenic activities

» But also: (natural) phenomenon of uncontrolled fire

- » RS has been shown to be useful to study fire ecosystem interaction, but..
 - » Mainly forest ecosystems
 - » Limited research with hyperspectral and/or very high spatial data
 - » Limited research on long-term analysis

HeathReCover – Recent fire events in Belgium

→ Maybe a tragedy, but definitely an opportunity..

- » The Kalmthoutse Heide
 - » May 25-26, 2011: +- 450 ha of heathland

(i.e. half of the core area)

» 21 April 1996: +/- 330 ha of heathland and forest

- » The Hautes Fagnes
 - » April 25, 2011
 - » > 1300 ha
 - (i.e. biggest fire ever in HF)

belspo

inbo

Natuur en Bos

- » The Kalmthoutse Heide
 - Study area for RS projects over the past years
 - » Short-term and long-term possibilities
 - » Large amount of data (field and image)
 - → Ideal Study Site
 - » The Hautes Fagnes
 - » Less abundant data

→ Suitable Test Site

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Milieu

HeathReCover – Project objectives

» "...to use RS as a tool to spatially and temporally investigate the complex interactions between fires and heathland and peat bog ecosystems"

» More Specific:

- » Delineate the **burn scars** in **detail using VHSR airborne digital VNIR** UltraCam data
- » Develop new methods to assess heathland and peat bog fire severity using hyperspectral data
- Map the abiotic conditions (e.g. soil typology and hydrology) just after a fire to enable the investigation of their relationship to fire and vegetation re-growth patterns
- » Spatially explicit assess (ecological loss in and restoration of) heathland and peat bog vegetation and habitats in the short-term, using hyperspectral data
- Investigate the potential of time-series analysis of historical Landsat datasets to characterize long-term post-fire heathland vegetation re-growth patterns

HeathReCover – Project approach – Study areas

» The Kalmthoutse Heide

During...

=

Natuur en Bos

HeathReCover – Project approach – WP breakdown

WP 1: Project management and Dissemination						
Data	Short-Term Analysis			Long-Term Analysis		
WP 2: Data collection and pre-processing	WP 3: Burn and Fire severity assessment of heathland fires	WP 4: Analysis of vegetation re-growth patterns	WP 5: Short-term assessment of ecological loss	WP 6: Long-term assessment using historical time- series		
	WP 3.1: Burn Scar Delineation					
	WP 3.2: Fire Severity Assessment					

» Burn scar delineation - new method based on RGBNir VHSR digital camera images

- » Fire/Burn severity analysis
 - » Modification and insights of GeoCBI usability in heathland ecosystems
 - » Correlation of GeoCBI to several spectral indices is strongly dependent of vegetation type..

» Fire/Burn severity analysis

Index Normalized Difference	Acroniem	Formule $NDVI = \frac{NIR - R}{R}$	Referentie
	NDVI	$NDVI = \frac{1}{NIR + R}$	Tucker (1979)
Vegetation Index		P=0.125	
Global Environmental		$GEMI = \gamma(1 - 0.25 \gamma) - \frac{R - 0.125}{1 - R}$	
Monitoring Index	GEMI		Pereira (1999)
		met $\gamma = \frac{2(NIR^2 - R^2) + 1,5 NIR + 0,5 R}{NIR + R + 0,5}$	
Enhanced Vegetation	EVI	$EVI = 2,5 \frac{NIR-R}{NIR-6R-7.5B+1}$	Huete et al. (2002)
Index		NIK-6 K-7,5 B+1	
Soil Adjusted Vegetation		$SAVI = (1+L)\frac{NIR-R}{NIR+R+L}$	
Index	SAVI	NIK+K+L	Huete (1988)
		met $L = 0,5$	
Modified Soil Adjusted	MSAVI	$MSAVI = \frac{2 NIR + 1 - \sqrt{(2 NIR + 1)^2 - 8 (NIR - R)}}{2 NIR + 1 - \sqrt{(2 NIR + 1)^2 - 8 (NIR - R)}}$	Qi et al. (1994)
Vegetation Index		2	
Burned Area Index BAI		$BAI = \frac{1}{(0,1+R)^2 + (0,06+NIR)^2}$	Chuvieco et al
		$(0,1+R)^{2} + (0,06+NIR)^{2}$	(2002)
Normalized Burn Ratio NBR		$NBR = \frac{NIR - LSWIR}{NIR + LSWIR}$	Key en Benson
		NIR+LSWIR	(2005)
Char Soil Index	CSI	$CSI = \frac{NIR}{LSWIR}$	Smith <i>et al.</i> (2007)
Mid-Infrared Burn Index	MIRBI	MIRBI = 10 LSWIR - 9,8 SSWIR + 2	Trigg en Flasse
			(2001)

/ /

» Fire/Burn severity analysis

Regressieparam	neters	GeoCBI = a * index + b		
Vegetatietype	optimale index	а	b	
Struikhei	CSI	-0,2168	0,7640	
Dophei	MIRBI	0,1686	0,2815	
Pijpenstrootje	MIRBI	0,2716	0,1977	
Grove den	NDVI	-1,7498	1,3697	
andere klassen	MSAVI	-1,9697	0,7492	

Schepers, L., Haest, B., Veraverbeke, S., & Others (in prep.). *Heathland fire severity assessment using APEX hyperspectral imagery*.

belspo

inbo

Natuur en Bos

GeoCBI op basis van optimale regressieparameters

Time for Questions..

http://heathrecover.vgt.vito.be

