HeathReCover - Remote sensing support to assist ecological restoration management after heathland fires

Birgen Haest, Jeroen Vanden Borre, Toon Spanhove, Sander Veraverbeke, Luc Bertels, Stefaan Lhermitte, Marc Dufrêne, Martine Waterinckx and Geert De Blust

http://heathrecover.vgt.vito.be
HeathReCover – Administrative details

» Project Period: Feb 2012 – Dec 2013

» Belspo co-funding project

» Partners:
HeathReCover – Project background

» Heathlands and peat bogs ecosystems
 » Highly valued landscapes of common European heritage
 » Large investment of effort and resources to conserve and manage them
 » Yet ... under threat:
 » Anthropogenic activities
 » But also: (natural) phenomenon of uncontrolled fire

» RS has been shown to be useful to study fire – ecosystem interaction, but..
 » Mainly forest ecosystems
 » Limited research with hyperspectral and/or very high spatial data
 » Limited research on long-term analysis
HeathReCover – Recent fire events in Belgium

→ Maybe a tragedy, but definitely an opportunity..

» The *Kalmthoutse Heide*
 » May 25-26, 2011: +/- 450 ha of heathland (i.e. half of the core area)
 » 21 April 1996: +/- 330 ha of heathland and forest

» The *Kalmthoutse Heide*
 » Study area for RS projects over the past years
 » Short-term and long-term possibilities
 » Large amount of data (field and image)

→ Ideal Study Site

» The *Hautes Fagnes*
 » April 25, 2011
 » > 1300 ha (i.e. biggest fire ever in HF)

» The *Hautes Fagnes*
 » Less abundant data

→ Suitable Test Site
HeathReCover – Project objectives

“...to use RS as a tool to spatially and temporally investigate the complex interactions between fires and heathland and peat bog ecosystems”

More Specific:

- Delineate the burn scars in detail using VHSR airborne digital VNIR UltraCam data
- Develop new methods to assess heathland and peat bog fire severity using hyperspectral data
- Map the abiotic conditions (e.g. soil typology and hydrology) just after a fire to enable the investigation of their relationship to fire and vegetation re-growth patterns
- Spatially explicit assess (ecological loss in and restoration of) heathland and peat bog vegetation and habitats in the short-term, using hyperspectral data
- Investigate the potential of time-series analysis of historical Landsat datasets to characterize long-term post-fire heathland vegetation re-growth patterns
HeathReCover – Project approach – Study areas

» The *Kalmthoutse Heide*

Before...
During...
HeathReCover – Project approach – WP breakdown

<table>
<thead>
<tr>
<th>WP 1: Project management and Dissemination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
</tr>
<tr>
<td>WP 3.1: Burn Scar Delineation</td>
</tr>
</tbody>
</table>

Data

Short-Term Analysis

Long-Term Analysis

- WP 2: Data collection and pre-processing
- WP 3: Burn and Fire severity assessment of heathland fires
- WP 4: Analysis of vegetation re-growth patterns
- WP 5: Short-term assessment of ecological loss
- WP 6: Long-term assessment using historical time-series

Logos

[Logos]
HeathReCover – Current activities, first results

- Burn scar delineation - new method based on RGBNir VHSR digital camera images
HeathReCover – Current activities, first results

» Fire/Burn severity analysis

» Modification and insights of GeoCBI usability in heathland ecosystems

» Correlation of GeoCBI to several spectral indices is strongly dependent of vegetation type..
HeathReCover – Current activities, first results

» Fire/Burn severity analysis

<table>
<thead>
<tr>
<th>Index</th>
<th>Acroniem</th>
<th>Formule</th>
<th>Referentie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalized Difference Vegetation Index</td>
<td>NDVI</td>
<td>$NDVI = \frac{NIR-R}{NIR+R}$</td>
<td>Tucker (1979)</td>
</tr>
<tr>
<td>Global Environmental Monitoring Index</td>
<td>GEMI</td>
<td>$GEMI = \gamma(1 - 0,25 \gamma) - \frac{R-0,125}{1-R}$ met $\gamma = \frac{2(NIR^2 - R^2) + 1,5 NIR + 0,5 R}{NIR + R + 0,5}$</td>
<td>Pereira (1999)</td>
</tr>
<tr>
<td>Enhanced Vegetation Index</td>
<td>EVI</td>
<td>$EVI = 2,5 \frac{NIR-R}{NIR-6R-7,5B+1}$</td>
<td>Huete et al. (2002)</td>
</tr>
<tr>
<td>Soil Adjusted Vegetation Index</td>
<td>SAVI</td>
<td>$SAVI = (1 + L) \frac{NIR-R}{NIR+R+L}$ met $L = 0,5$</td>
<td>Huete (1988)</td>
</tr>
<tr>
<td>Modified Soil Adjusted Vegetation Index</td>
<td>MSAVI</td>
<td>$MSAVI = \frac{2NIR+1 - \sqrt{(2NIR+1)^2 - 8(NIR-R)}}{2}$</td>
<td>Qi et al. (1994)</td>
</tr>
<tr>
<td>Burned Area Index</td>
<td>BAI</td>
<td>$BAI = \frac{1}{(0,1+R)^2 + (0,06+NIR)^2}$</td>
<td>Chuvieco et al. (2002)</td>
</tr>
<tr>
<td>Normalized Burn Ratio</td>
<td>NBR</td>
<td>$NBR = \frac{NIR-LSWIR}{NIR+LSWIR}$</td>
<td>Key en Benson (2005)</td>
</tr>
<tr>
<td>Char Soil Index</td>
<td>CSI</td>
<td>$CSI = \frac{NIR}{LSWIR}$</td>
<td>Smith et al. (2007)</td>
</tr>
<tr>
<td>Mid-Infrared Burn Index</td>
<td>MIRBI</td>
<td>$MIRBI = 10 LSWIR - 9,8 SSWIR + 2$</td>
<td>Trigg en Flasse (2001)</td>
</tr>
</tbody>
</table>
HeathReCover – Current activities, first results

» Fire/Burn severity analysis

<table>
<thead>
<tr>
<th>Vegetatiotype</th>
<th>optimale index</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Struikhei</td>
<td>CSI</td>
<td>-0.2168</td>
<td>0.7640</td>
</tr>
<tr>
<td>Dophei</td>
<td>MIRBI</td>
<td>0.1686</td>
<td>0.2815</td>
</tr>
<tr>
<td>Pijpenstrootje</td>
<td>MIRBI</td>
<td>0.2716</td>
<td>0.1977</td>
</tr>
<tr>
<td>Grove den</td>
<td>NDVI</td>
<td>-1.7498</td>
<td>1.3697</td>
</tr>
<tr>
<td>andere klassen</td>
<td>MSAVI</td>
<td>-1.9697</td>
<td>0.7492</td>
</tr>
</tbody>
</table>

Time for Questions..

http://heathrecover.vgt.vito.be