Compact High Resolution Imaging Spectrometer (CHRIS): the future of hyperspectral satellite sensors

Imagery of Oostende coastal and inland waters

Barbara Van Mol Kevin Ruddick

Airborne Imaging Spectroscopy Workshop Brugge, 8 October 2004

- Introduction
- CHRIS/PROBA
- Traditional Ocean Colour satellite sensor vs. airborne imaging spectroscopy
- CHRIS potential
- CHRIS images from test site Oostende
 - Image processing
 - Sea
 - Comparison with other data sources
 - SPM & CHL
 - Inland: Spuikom
- Conclusion

- Introduction
- CHRIS/PROBA
- Traditional Ocean Colour satellite sensor vs. airborne imaging spectroscopy
- CHRIS potential
- CHRIS images from test site Oostende
 - Image processing
 - Sea
 - Comparison with other data sources
 - SPM & CHL
 - Inland: Spuikom
- Conclusion

INTRODUCTION

- BELCOLOUR: creation of Suspended Particulate Matter (SPM) and chlorophyll maps
 - Airborne imagery: VITO
 - Satellite imagery: MUMM
 - SeaWiFS: Sea-viewing Wide Field of view Sensor
 - MERIS: MEdium Resolution Imaging Spectrometer Instrument
 - MODIS: Moderate Resolution Imaging Spectroradiometer
 - CHRIS: Compact High Resolution Imaging Spectrometer
- Why here?
 - Satellite sensor (CHRIS) has similar characteristics with airborne imaging spectroscopy

- Introduction
- CHRIS/PROBA
- Traditional Ocean Colour satellite sensor vs. airborne imaging spectroscopy
- CHRIS potential
- CHRIS images from test site Oostende
 - Image processing
 - Sea
 - Comparison with other data sources
 - SPM & CHL
 - Inland: Spuikom
- Conclusion

CHRIS

- <u>Compact</u> → <15 kg
 <u>H</u>igh <u>R</u>esolution → 18 m
- <u>Imaging Spectroscopy</u> → "class of instruments which preserve the image field while also determining the spectrum"

62 spectral bands 410nm-1050nm 1.3nm at 410nm 12nm at 1050nm

developed by Sira Electro-Optics Ltd.

PROBA

- Project for on board autonomy
- Advanced small satellite
- Pointable
- High level of autonomy
- Created by Verhaert

- Introduction
- CHRIS/PROBA
- Traditional Ocean Colour satellite sensor vs. airborne imaging spectroscopy
- CHRIS potential
- CHRIS images from test site Oostende
 - Image processing
 - Sea
 - Comparison with other data sources
 - SPM & CHL
 - Inland: Spuikom
- Conclusion

Traditional Ocean Colour satellite sensor vs. airborne imaging spectroscopy (1)	satellite based IS	CHRIS/PROBA	Airborne IS
homogeneous data quality over a long time-frame	+	+	-
level of support	+	+/-	-
Entire earth is viewed with regular repetition	+	+/-	-
pointable	+/-	+	-
spatial resolution	-	+	+
geographical flexibility	-	+/-	+
spectral resolution	-	+	+
programmable spectral bands and pixel sizes	-	+/-	+

Traditional Ocean Colour satellite sensor vs. airborne imaging spectroscopy (2)

- Unprocessed CASI image Oostende (16 June 2003) (R=643nm, G=551nm, B=461nm)
- Unprocessed CHRIS image (21 September 2003) (R=691nm, G=561nm, B=442nm)
- Unprocessed SeaWiFS image (5 August 2003) (670nm)

Airborne Imaging Spectroscopy Workshop Brugge, 8 October 2004

- Introduction
- CHRIS/PROBA
- Traditional Ocean Colour satellite sensor vs. airborne imaging spectroscopy
- CHRIS potential
- CHRIS images from test site Oostende
 - Image processing
 - Sea
 - Comparison with other data sources
 - SPM & CHL
 - Inland: Spuikom
- Conclusion

CHRIS potential

- Small low-cost
- spectral resolution than current ocean colour sensors
- Pointability Atmospheric effects
- \rightarrow same area, different angles
 - Air-sea interface effects
 - Special event
- Mapping small features

Airborne Imaging Spectroscopy Workshop Brugge, 8 October 2004

- Introduction
- CHRIS/PROBA
- Traditional Ocean Colour satellite sensor vs. airborne imaging spectroscopy
- CHRIS potential

CHRIS images from test site Oostende

- Image processing
- Sea
 - Comparison with other data sources
 - SPM & CHL
- Inland: Spuikom
- Conclusion

CHRIS images from test site Oostende

- 13 image sets, 4 cloud free
- 9 with sea borne measurements...BUT only 2 cloud free image sets with sea borne measurements
- Mode 1: 62 spectral bands (411-997nm), 36 m² resolution

- Introduction
- CHRIS/PROBA
- Traditional Ocean Colour satellite sensor vs. airborne imaging spectroscopy
- CHRIS potential
- CHRIS images from test site Oostende
 - Image processing
 - Sea
 - Comparison with other data sources
 - SPM & CHL
 - Inland: Spuikom
- Conclusion

Image processing (1)

- Some problems: destriping, atmospheric correction and georeferencing
- Destriping
 - Correction factor based on a 5 column moving average

Airborne Imaging Spectroscopy Workshop Brugge, 8 October 2004

Image processing (2)

- Atmospheric correction
 - Darkest pixel approach
- Georeferencing
 - GCP's on land
 - Problem: uncertainty is amplified considerably far from land

Airborne Imaging Spectroscopy Workshop Brugge, 8 October 2004

- Introduction
- CHRIS/PROBA
- Traditional Ocean Colour satellite sensor vs. airborne imaging spectroscopy
- CHRIS potential
- CHRIS images from test site Oostende
 - Image processing
 - Sea
 - Comparison with other data sources
 - SPM & CHL
 - Inland: Spuikom
- Conclusion

Comparison with other data sources of 2 points at sea Images of 5 August 2003(1)

Comparison with other data sources of 2 points at sea Images of 5 August 2003 (2)

- All sensors show higher reflectance at station 130
- Differences in values: → Time
 - \rightarrow Darkest pixel assumption

- Introduction
- CHRIS/PROBA
- Traditional Ocean Colour satellite sensor vs. airborne imaging spectroscopy
- CHRIS potential
- CHRIS images from test site Oostende
 - Image processing
 - Sea
 - Comparison with other data sources
 - SPM & CHL
 - Inland: Spuikom
- Conclusion

SPM maps (1)

Airborne Imaging Spectroscopy Workshop Brugge, 8 October 2004

BELCOLOUR PROJECT

[22]

SPM maps (2)

[23]

chlorophyll maps

Airborne Imaging Spectroscopy Workshop Brugge, 8 October 2004

BELCOLOUR PROJECT

[24]

- Introduction
- CHRIS/PROBA
- Traditional Ocean Colour satellite sensor vs. airborne imaging spectroscopy
- CHRIS potential
- CHRIS images from test site Oostende
 - Image processing
 - Sea
 - Comparison with other data sources
 - SPM & CHL
 - Inland: Spuikom
- Conclusion

Inland waters: adjacency effects? Images of 6 July 2004

Only image with FBZ = 0°

Airborne Imaging Spectroscopy Workshop Brugge, 8 October 2004

Inland waters: adjacency effects? Images of the Spuikom on 6 July 2004

Reflectance image D: FBZ=0°

Airborne Imaging Spectroscopy Workshop Brugge, 8 October 2004

BELCOLOUR PROJECT

[27]

Inland waters: adjacency effects? Some spectra

Airborne Imaging Spectroscopy Workshop Brugge, 8 October 2004 BELCOLOUR PROJECT

[28]

Inland waters: adjacency effects? North-South transect Spuikom

 NIR North shore (vegetation) > NIR South shore (urban)

North: NIR reflectance > red reflectance

Airborne Imaging Spectroscopy Workshop Brugge, 8 October 2004

Inland waters: adjacency effects?

- Bottom reflection?
 - Northern and Eastern parts: bottom visible

BUT bottom reflectance become rapidly absorbed for red and NIR wavelengths

e.g. clear water, $1m \rightarrow$ surface signal of bottom reflectance attenuated to factor 0.45 and 0.015 or smaller at 709nm and 850nm respectively

- Adjacency (environmental straylight)?
 - Rapid decrease by going away from the North shore is consistent with * atm. forward scattering
 - Higher reflectance at 777nm is consistent with a similar difference for the nearby vegetation
 - Turbid water in the South tends to hide the adjacency effect

- Introduction
- CHRIS/PROBA
- Traditional Ocean Colour satellite sensor vs. airborne imaging spectroscopy
- CHRIS potential
- CHRIS images from test site Oostende
 - Image processing
 - Sea
 - Comparison with other data sources
 - SPM & CHL
 - Inland: Spuikom
- Conclusion

Conclusions

- Some problems in image quality
- Simple dark pixel atmospheric correction gives reasonable results good enough for suspended particulate matter BUT better atmospheric correction by radiative transfer modeling
- CHL detection ???
- CHRIS data for inland water body are contaminated in the NIR, especially for clear water pixels → adjacency effect Bottom reflection ?
- Great potential
 - Hyperspectral \rightarrow more info for CHL detection
 - Spatial resolution \rightarrow smaller features visible
- CHRIS/PROBA provides proof of the concept and advance warning of expected problems in future systems

Acknowledgement

- Tuimelaar crew
- BMM Chemistry lab
- Vera De Cauwer
- ESA & SIRA
- Peter Fletcher
- You.....

[33]

Airborne Imaging Spectroscopy Workshop Brugge, 8 October 2004

....FOR YOUR ATTENTION

Airborne Imaging Spectroscopy Workshop Brugge, 8 October 2004 BELCOLOUR PROJECT

[34]