

APLADYN STEREO II project (SR/00/132)

Urbanisation as a threat for heritage and archaeology, the case of Cairo

Marijn Hendrickx, Véronique De Laet, Cornelis Stal, Alain De Wulf, Rudi Goossens

rudi.goossens@UGent.be, 3Data Acquisition, Dept. Of Geography, Ghent University

What's the project context?

<u>Anthropogenic and physical landscape dynamics in large fluvial</u> systems

Aim is to explore and evaluate the possibilities of a **variety** of existing and recently developed **RS sources** and RS analysis methodologies to map the long-lasting **interaction** between the **anthropogenic** landscape and the **physical** environment in large **fluvial systems**, and the **impact** of these interactions on the natural and cultural **heritage**.

Who are the different partners?

What are the different WPs?

The case of the Ghiza plateau

Is the Giza pyramid plateau under pressure?

How can we analyse this urban expansion?

Accurate and detailed geographic data delivered from recent high resolution satellite images

RS has already proven to be very useful for analysing and visualising urban sprawl and land use however mainly in 2D and on large scale high resolution aerial images

Complement this data with accurate height information from DSMs for

- A. 2.5D change detection
- B. Viewshed analyses

Which data has been used?

2.5D change detection

2005 <u>Ikonos panchromatic stereo</u> images (GSD 1m – Acq. date = 9th January)

2009 & 2011 <u>GeoEye panhcromatic stereo (</u>GSD 0.5m – Acq.date : 1 pair 2nd July '09 – 2 pairs 24th June '11)

22 <u>GCP</u>'s measured in January 2011 with dGPS (C-Nav) with subpixel accuracy

Photogrammetric processing software: Leica Photogrammetric Software (<u>LPS</u>) and enhanced digital terrain extraction (<u>eATE</u>) module of Erdas Imagine[®]

Which data has been used?

Viewshed analysis

1970 <u>Corona panchromatic stereo images</u> (theoretical GSD 1.8m – Acq. date = 23th Nov)

2005 Ikonos panchromatic stereo images (GSD 1m – Acq. date = 9th January)

2009 & 2011 GeoEye panchromatic stereo (GSD 0.5m – Acq.date : 1 pair 2nd July '09 – 2 pairs 24th June '11)

22 GCP's measured in January 2011 with dGPS (C-Nav) with subpixel accuracy => accompanied with extra gcp's generated out of triangulated GeoEye'11 images

Photogrammetric processing software: Leica Photogrammetric Software (LPS) and enhanced digital terrain extraction (eATE) module of Erdas Imagine[®]

Which data has been used?

Extends of the different data sources

Legend

Data processing – accuracies DSMs

TABLE II

	Statistics (m)		
	RMSE	Mean Error	LE90
2005	0.522	0.020	0.858
2009	0.380	0.004	0.625
2011	0.366	-0.035	0.601

ACCURACIES OF THE OUTPUT SURFACES

Data processing - example

DSM based on 2011 stereo images

Data processing –example oblique view

Study areas change detection

Location of the different study areas

TABLE I. STATISTICS OF THE NEIGHBOURHOOD DATA ANALYSIS

Area	Statistics (m)		
Area	Maximum	Mean	Standard dev.
Mansoureya	40.56	19.85	4.33
Pyr.Garden	128.68	97.08	9.04
Giza centre	71.94	33.74	11.45
Ringroad	66.87	27.41	8.83
Hotelarea	111.63	64.93	21.10

Change detection – Pyramid Garden

Urban Expansion - Background: image of 2009

Data processing – Pyramid Garden

DSM urban expansion (2009)

DSM urban expansion (2011)

Data processing – 2.5D change detection

- 1. Median filter kernel 5 * 5 to reduce noise
- 2. Assumptions

One floor = 3m high

100m² building floor for this area (Sims, 2010)

Method adapted and modified from Stal et al. (2013)

Data processing – 2.5D change detection methodology

Data processing – 2.5D change detection methodology

Data processing – 2.5D change detection

Difference DSM 2011 minus 2009

Data processing – 2.5D change detection

Filtered DSM - Threshold 3m

Where are the new buildings and floors?

Why these points?

Distribution in the overlapping area in relation to the Pyramid Plateau

Height value +- same over 4 decades.

2009

Achtergrond: orthofoto GeoEye-1 (2009)

2011

Achtergrond: orthofoto's GeoEye-1 (2011)

Viewshed 1970

- Aantal pixels zichtbaar in 1970: 1011334
 - waarvan woestijn/natuur: 863414
 - waarvan bebouwing: 147920

Piramides zichtbaar vanaf viewpoint

Legende

• Viewpoint

Zichtbare woestijn/natuur

Zichtbare bebouwing

Achtergrond: orthofoto CORONA KH-4B met Wallisfilter (1970)

Viewshed 2005

- Aantal pixels zichtbaar in 2005: 310856
 - waarvan woestijn/natuur: 226195
 - waarvan bebouwing: 84661
- Aantal pixels ook zichtbaar in 1970: 119820

Piramides zichtbaar vanaf viewpoint

Legende

• Viewpoint

Zichtbare woestijn/natuur

Zichtbare bebouwing

Achtergrond: orthofoto Ikonos-2 (2005)

Viewshed 2009

275830
199863
75967
75603

Piramides zichtbaar vanaf viewpoint

Legende

Viewshed 2011

- Aantal pixels zichtbaar in 2011:	281104	
- waarvan woestijn/natuur:	183864	
- waarvan bebouwing:	97240	

- Aantal pixels ook zichtbaar in 1970, 2005 & 2009: 59411

Piramides zichtbaar vanaf viewpoint

Legende

Viewpoint

Zichtbare woestijn/natuur

Zichtbare bebouwing

Achtergrond: orthofoto's GeoEye-1 (2011)

Viewshed 1970

Legende

Viewpoint

Zichtbare bebouwing

Achtergrond: orthofoto CORONA KH-4B met Wallisfilter (1970)

Conclusions

We managed to create accurate and comparable DSMs from different time periods

2.5D change detection method can be used to estimate/analyse the urban sprawl in areas without (population) statistics

However

An individual vector layer is not possible Reference data is not available for validation > Digitalisation roof buildings

Viewshed analyses provide view into the past how the landscape around the world heritage site changed throughout the last 40 years and can/should thus be used as a management tool

Conclusions

Conclusions

And...what it is

Thanks for your attention!

Contact and information:

Rudi Goossens <u>rudi.goossens@UGent.be</u>, Dept. Of Geography, Ghent University