

28/11/2014

Anaghlia

Analysis and Ground Truthing of Hyperspectral and LiDAR images in Archaeology

Project overview

ANAGHLIA is a spin-off from the former RAGALIRS project

Main objective:

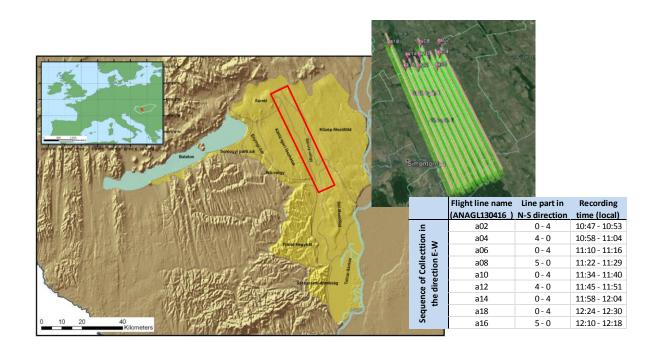
→ to explore the use of **hyperspectral** and **LiDAR** data for the identification of ancient natural and cultural features.

Coordination:

- KULeuven → VITO

Partners:

- Groningen Institute of Archaeology (GIA)
 - → Active in the Raganello catchment, Italy for many years.
- Institute of Geosciences, University of Mainz
 - → Magnetometer measurements, geochemical analysis, etc.
- Hungarian National Museum (HNM)
 - → Archaeologists, local partner



© 2014, VITO NV

Study area

Sárvíz valley (Hungary)

- because of the abundance of archaeological features
- LiDAR data existed from the former ARMSRACE project (Eufar)
- On 16/04/2013 APEX imaging spectroscopy data was collected

Archaeological feature detection

- LiDAR data for DTM extraction
 - → used in archaeological prediction modelling (HNM)
- APEX data for archaeological feature detection
 - \rightarrow 2 types:
 - Fragments of pottery, roof tiles, etc.
 - Altered soils, i.e. darkened soil due to ancient burn activities

Outcome & conclusions

Hyperspectral data could not be used for detecting the archaeological features in Sarviz

- High spectral resolution is needed as concluded from RAGALIRS
 - → Covered with soil and dust = spectral features are masked
- APEX spatial resolution (2 m) too coarse
 - → Archaeological features are small, i.e. few cm
 - → Sparsely scattered over the terrain

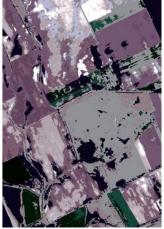
Proposed alternative UAV with digital camera (3 cm)

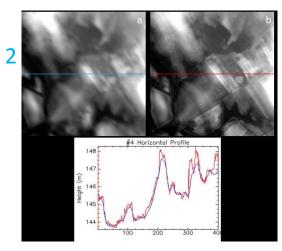
UAV RGB data fusion with APEX
(Ref. Delalieux S., et al., Unmixing Based Fusion of Hyperspatial and Hyperspectral Airborne Imagery for Early Detection of Vegetation Stress. JSTARS.)

→ Same conclusion as above

© 2014, VITO NV

Outcome & conclusions


1. Unsupervised endmember extraction optimization for soil mapping


→ Ref. The Spatial/Spectral Iterative Rule based Endmember Extraction algorithm (SSIREE), Remote Sensing, (paper in preparation)

2. Improved DTM extraction from LiDAR

→ Ref. DTM retrieval by multidirectional convolution height filtering, Remote Sensing, (paper in preparation)

→ Soon available at:

Ref. http://sourceforge.net/p/enviidlcodelibr/wiki/Home/

