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Snow IS Life

Show

Data

Objectives

Looking Forward

energy: change In land-atmosphere interactx:

$ climate

water: supply of drinking water, agricultur =
water (1/6 of world population) ey
business: tourism, recreation, hydropower




Remote Sensing of Snow
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Remote Sensing of Snow

Snhow
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Looking Forward
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How much water iIs stored in Earth's terrestrial snow?
Over vegetated areas?

‘No accurate estimates available, |
and no single observation type answers that question.
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NASA's SnowEx

Snow

Data
RS

Modeling

Objectives
Looking Forward

GOAL: design future international
spaceborne snow mission

5-year NASA campaign

I 2017: Grand Mesa, Colorado, US
at topography, gradient of forest cover
spaceborne, airborne and terrestrial RS
intensive eld data collection
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NASA's SnowEx
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Land Surface Modeling

High Performance Model Computing

Snow

Land surface model

Data Radiative transfer and

RS
SnowEx

Objectives

backscatter model

Surface

Looking Forward (0-5 cm)

SMRT, MEMLS3&a, TARTES
+ up/downscaling

NASA Land Information Systerﬁ

... because we cannot observe everything! -
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Objectives
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Schematic .

o okin Foruard n Can large-scale land surface models simulate 1 km snows patte Grand
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Mesa (under a vegetation gradient)?
n Can forward models mimic what remote sensors see?
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Objectives

Snow

pEERe 1. Characterizepatio-temporal distribution of snow In
observations and simulations

Schematic

n Can large-scale land surface models simulate 1 km snows patite Grand

Mesa (under a vegetation gradient)?
n Can forward models mimic what remote sensors see?

Looking Forward

2. Merge level 1 remote sensing and model data, and

exploit sensor synergy to get the best possible snow estimates and uncertair
3. Objectively rank sensors for their observation impact,

strati ed by vegetation density and meteorological comslit
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Snow

Data

Objectives
3 goals

Looking Forward

O=observation, B=background 8/9



Snow

Data
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Looking Forward

Looking Forward

Problem: snow water estimation
Towards a Solution:

SnowkEx+ SNOPOST
How:

u physical modeling
u RS observations
u Bayesian merging

Who: KU Leuven + USRA, NASA

In situ snow depth analysis
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