

STEREO: Agriculture and vegetation at a local scale

Early detection of biotic stress in fruit orchards using statistically-based hyperspectral analysis

Stephanie Delalieux, Jan van Aardt, Wannes Keulemans & Pol Coppin

Department of Biosystems : M3-BIORES Katholieke Universiteit, Leuven, Belgium Stephanie.Delalieux@biw.kuleuven.be

Objectives

Stress-induced variability

Determine if *Venturia inaequalis* infected leaves could be differentiated from healthy leaves by measuring their hyperspectral reflectance spectra

- > At which developmental stage ?
- > At which wavelength ?

Phenological-induced variability

Determine if physiological changes in healthy leaves could be detected during the first days of development by measuring their hyperspectral reflectance spectra

Link to physiological knowledge ?

Vegetation spectrum

Apple scab disease cycle

Scab stress manifests in different stadia

20 September 2005

Apple scab disease

Wayne F. Wilcox, 2005

Vegetative Material

In vitro cloned cultivars					
Susceptible to scab	'Braeburn'				
Resistant to scab	'Rewena'				

Number of plants & measurements								
Infected	10 plants	2 leaves	2 measurements	Total:				
	/cultivar	/plant	/leaf	40				
Placebo	10 plants	2 leaves	2 measurements	Total:				
	/cultivar	/plant	/leaf	40				
Control	10 plants	2 leaves	2 measurements	Total:				
	, /cultivar ,	/plant	/leaf	40				

20 September 2005

Cultivars

Objectives → Methods

Problem	 High dimensionality of the hyperspectral dataset (too many variables: 350-2500 nm) Data not normally distributed
Solution	Logistic Discriminant Analysis (LDA) Tree-Based Modeling (TBM)

This research

Detection of differences between hyperspectral reflectance spectra of healthy and infected leaves using LDA and TBM

Logistic regression

Logistic regression

• Binary response variables stressed (0), healthy (1)

Step1 : Analysis at each wavelength (350-2500nm)

Step2 : Discriminatory performance (ROC-curve)

Tree-Based Modeling

Normal distribution not required

• Dimension reduction of high dimensionality

Step 1 : Define decision rules

- Step 2 : Selection of splits impurity criterion Gini index
- Step 3 : Stopping rule cost-complexity pruning, 10 x CV

Step 4 : Plurality rule

Step 5 : Accuracy - κ-values & correctness values

		Braeburn : SUSCEPTIBLE CULTIVAR								
		Tree-Based Modeling								
D	Day	Full TBM	CORRECT	κ	Pruned TBM	CORRECT	κ	1 WVL	CORRECT	к
Ĩ	10	2447	0.87	0.72	2447	0.87	0.72	2447	0.87	0.72
de	14	1615+513	0.90	0.78	1615+513	0.90	0.78	1615	0.85	0.70
no	18	840	0.99	0.97	840	0.99	0.97	840	0.99	0.97
	21	784+512	0.94	0.88	784+512	0.94	0.88	784	0.92	0.85
Se	26	698	0.99	0.97	698	0.99	0.97	698	0.99	0.97
Da	31	701+1433	0.94	0.88	701	0.93	0.85	701	0.93	0.85
	Rewena : RESISTENT CULTIVAR									
Ū		Tree-Based Modeling								
	Day	Full TBM	CORRECT	κ	Pruned TBM	CORRECT	κ	1 WVL	CORRECT	κ
 ທ	10	531+741+1777+1397+697+581	0.88	0.75	531	0.59	0.18	531	0.59	0.18
ult	14	401+1903	0.83	0.65	401	0.78	0.55	401	0.78	0.55
es	18	767	0.83	0.65	767	0.83	0.65	767	0.83	0.65
	21	976+401	0.84	0.68	976+401	0.84	0.68	976	0.75	0.50
	26	699+454+405+1594	0.91	0.83	699+454	0.81	0.63	699	0.71	0.43
	31	2439+1938+414+410	0.91	0.83	2439+1938	0.79	0.58	2439	0.69	0.38

Conclusions – Stress Detection

Immediately after infection

• Susceptible cultivars: 1500nm –1800nm, 2450 nm

Two weeks after infection

- Susceptible cultivars: 700nm 850 nm
- Resistant cultivars : 970nm, 1650nm

30 days after infection

• Susceptible cultivars: 550-715 nm, ~1500 nm

۲

Phenological variability

- Causality of the results of the scab experiment ?
- Normal growth process
 Stressed
- Ontogenic resistance ?
- Test TBM on dataset of which the physiological changes are well-known

feed-back physiological knowledge

Phenological variability

Physiological feed-back

20 September 2005 **REIP shifts to longer wavelengths**

 \rightarrow [Chl] *f* (absorption feature around 670nm broadened)

Feed-back chlorophyll-related indices :

(Zarco-Tejada *et al.*, 2001)

Conclusions - Phenology

Feed-back physiological knowledge

- Pigment concentration increases during first days after leaf development
- Results of TBM can be explained by physiological knowledge

TBM

• TBM was succesful in detecting effects of physiological changes in plants using hyperspectral data

Acknowledgements

- BELSPO for financing the Hypercrunch project, especially to Drs. Joost Vandenabeele and Carine Petit for their support
- KU Leuven project (FLOF) funding

For further information

Stephanie.Delalieux@biw.kuleuven.be