ASSIMIV (Part 1) Artefact detection

using image to map comparison

Namur,

12 February 2008

J. Radoux P. Defourny

ASSIMilation of Image in Vector

Upgrade

For assimilation of VHR images into planimetrically accurate vector DB

Screening then exploiting discrepancies

3 types of discrepancies...

Update & upgrade
 Objects

First step : boundary artefacts

Consistent vector boundaries?

Adjust GIS database to pseudo ortho-image Trigonometric model Transfer GIS labels to image-objects Zonal majority filter Measure planimetric errors along edges Accuracy and precision Detect potential artefacts Statistical approach

Trigonometric model

- Residual x-parallax shift
 - Proportional to object height
 - Function of the viewing zenith angle
 - In the direction of the viewing azimuth angle
 - Shift = H * tan(VZA)
 - Apparent shift
 - Vertical sides can be similar to the object top
 - E.g. hedges, but rarely buildings
 - Vertical sides are part of the same object
 →No apparent shift when facing the satellite

Automated edge adjustment and shadow candidate detection

Shadow

Original vector database

Shade and parallax added

Quickbird image \rightarrow over-segmentation

Automated majority-based labelling

Edge quality assessment

Indicators for accuracy and precision Edge based bias and standard deviation Parallax error Rough height estimate (checked with shadows) Mislabelled polygons Processed in object conflict detection (part 2) Other conflicts Error above RMS and class uncertainty : update needed (GIS-based bias removal) Errors below RMS or class uncertainty : tolerated

Normalised bias : systematic errors

- Difference between invasion and recession
 Normalised by reference interface length
- Affected by
 - Edge definition (Database bias)Image acquisition (Image bias)

Sampling for STD estimation

E.g. : forest/crop fields boundaries

Second part : Object conflicts

Are « brother » sub-object similar ?

Per field and per class assessment

- Depends on the intra field heterogeneity
- Characteristic selection
 - Still to do...
 - Only spectral values used at this point
- Bi-modal iterative trimming
 - Use EM algorithm for bi-modal parameters
 - Likelihood treshold

Iterative trimming

- Assumes that outliers in the distribution are discrepancies
- 1. Evaluate distribution parameters
 - 1. Bi-modal distribution (EM algorithm)
 - 2. Multinomial Gaussian
- 2. Log-likelihood test for the best distribution
- 3. Run until no more outliers

4. Calculate likelihood with final parameters

Application example : forest change

Conclusion and perspectives

- Good complementarity between the 2 parts
- Method detects thematic and planimetric discrepancies, but...
- 1. Overdetection
- → Need to classify discrepancies (hope to see you in 2009)
- 2. Not appropriate for linear objects
 - Use other methods (snakes, filters...)
- 3. Validation is a real issue
 - Change, artefacts, fuzzy boundaries, semantic...

Pansharpening tool for OTB

- Bayesian data fusion
 - Fasbender, Radoux and Bogaert
- Works with any optical image
 - Particularly good with VHR
- Adaptable
 - Tuning between « color » and « details »
 - Optimized for the application
 - Optimized for the study area

Urban and rural examples

Thank you for your attention

