ASSIMIV (Part 1)
Artefact detection using image to map comparison

Namur, 12 February 2008

J. Radoux
P. Defourny
ASSIMilation of Image in Vector

Update
Upgrade

For assimilation of VHR images into planimetrically accurate vector DB

Department of Environmental Sciences and Landuse Planning (UCL)
Screening then exploiting discrepancies
3 types of discrepancies...

- **Update & upgrade**
 - Objects

- **Artefacts**
 - Objects

- **Planimetric errors**
 - Edges
First step : boundary artefacts
Consistent vector boundaries?

- Adjust GIS database to pseudo ortho-image
 - Trigonometric model
- Transfer GIS labels to image-objects
 - Zonal majority filter
- Measure planimetric errors along edges
 - Accuracy and precision
- Detect potential artefacts
 - Statistical approach
Trigonometric model

- **Residual x-parallax shift**
 - Proportional to object height
 - Function of the viewing zenith angle
 - In the direction of the viewing azimuth angle
 - Shift = H * tan(VZA)

- **Apparent shift**
 - Vertical sides can be similar to the object top
 - E.g. hedges, but rarely buildings
 - Vertical sides are part of the same object
 → No apparent shift when facing the satellite
Automated edge adjustment and shadow candidate detection
Original vector database
Shade and parallax added
Quickbird image \rightarrow over-segmentation
Edge quality assessment

- Indicators for accuracy and precision
 - Edge based bias and standard deviation
 - Parallax error
 - Rough height estimate (checked with shadows)
- Mislabelled polygons
 - Processed in object conflict detection (part 2)
- Other conflicts
 - Error above RMS and class uncertainty: update needed (GIS-based bias removal)
 - Errors below RMS or class uncertainty: tolerated
Normalised bias: systematic errors

- Difference between invasion and recession
- Normalised by reference interface length
- Affected by
 - Edge definition (Database bias)
 - Image acquisition (Image bias)
Sampling for STD estimation

- Some edges are more reliable than others
 - Ecotones
 - Fuzzy edges
 - Simplified objects
E.g.: forest/crop fields boundaries
Second part: Object conflicts
Are « brother » sub-object similar?

- Per field and per class assessment
 - Depends on the intra field heterogeneity
- Characteristic selection
 - Still to do...
 - Only spectral values used at this point
- Bi-modal iterative trimming
 - Use EM algorithm for bi-modal parameters
 - Likelihood threshold
Iterative trimming

Assumes that outliers in the distribution are discrepancies

1. Evaluate distribution parameters
 1. Bi-modal distribution (EM algorithm)
 2. Multinominal Gaussian

2. Log-likelihood test for the best distribution

3. Run until no more outliers

4. Calculate likelihood with final parameters
Application example: forest change
Conclusion and perspectives

- Good complementarity between the 2 parts
- Method detects thematic and planimetric discrepancies, but...

1. Overdetection
 - Need to classify discrepancies (hope to see you in 2009)

2. Not appropriate for linear objects
 - Use other methods (snakes, filters...)

3. Validation is a real issue
 - Change, artefacts, fuzzy boundaries, semantic...
Pansharpening tool for OTB

- Bayesian data fusion
 - Fasbender, Radoux and Bogaert
- Works with any optical image
 - Particularly good with VHR
- Adaptable
 - Tuning between « color » and « details »
 - Optimized for the application
 - Optimized for the study area
Urban and rural examples
Thank you for your attention