Improving epidemiological modelling using satellite derived soil moisture proxies
Epidemiology

- **Epidemiology**: study of factors affecting the health and illness of populations
 - foundation to make interventions in the interest of public health and preventive care

- **Epidemiologic modelling**: quantitative studies on different epidemiological aspects, such as
 - analysis of factors that influence and control invasion, persistence and variability of disease
 - spatial and temporal dynamics of epidemics at a range of spatial scales
 - improved understanding of space-time dynamics of disease transmission
 - increased effectiveness disease control strategies
 - prevent disease outbreaks
 - prevent disease spread
Bluetongue – the disease

- A severe viral disease of ruminants, affecting sheep, cattle, goats,

- The virus is transmitted by biting midges of the genus Culicoides (Diptera: Ceratopogonidae).

- No public health issue.

- Economic losses (worldwide 3 billion USD/year).
Bluetongue - symptoms

- Fever
- Swelling of the head and neck
- Lameness
- Inflammation of the mucous membrane of the mouth, nose and eyes
- Drooling
- Respiratory problems
- Discoloration and swelling of the tongue
- High mortality rate
Bluetongue - history

- Enzootic from sub-saharian Africa; first reports in Europe in 1957-1960 (Portugal & Spain), 1977 (Cyprus), Greece (1980).
- Emergence in Mediterranean Europe from 1999
 - BTV 1, 2, 4, 9, 16
 - Primary vector Culicoides imicola
- From 2006 onward: spreading through temperate Europe
 - BTV 8, 1
 - Primary vector Culicoides obsoletus group
Culicoides – What are they?

- Genus of biting midges
- The large majority of *Culicoides* species are blood-feeding insects
- Over 120 species in Europe
- Only a very low fraction of those species are known to vector pathogens, including BTV, African Horse Sickness
- Very diverse habitats and ecologies; some species are common, some have very specific habitats
- Complex taxonomy
Culicoides – life cycle

In the topsoil
Culicoides – distribution model

- Model geographical distribution of Culicoides using (a)biotic predictor variables
 - Meteorological data (weather stations, remote sensing)
 - Land Use/ Land Cover
 - Elevation, aspect
- Several studies in Mediterranean basin (C. imicola)
- Good model performances on a national scale
EPIDEMOIST – project objectives

- Improve distribution maps through
 - Inclusion of additional predictor variables
 - Application of State-of-the-Art modelling techniques
EPIDEMOIST – project objectives

- Improve distribution maps through
 - Inclusion of additional predictor variables
 - Application of State-of-the-Art modelling techniques
Literature review:

<table>
<thead>
<tr>
<th>Satellite data</th>
<th>Meteorological data</th>
<th>Soil data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land surface temperature</td>
<td>Temperature (annual mean, min, max)</td>
<td>Organic matter content</td>
</tr>
<tr>
<td>Air temperature</td>
<td>Precipitation (annual mean)</td>
<td>Soil texture (clay and sand content)</td>
</tr>
<tr>
<td>Middle IR reflectance</td>
<td>Aridity index (P/PET)</td>
<td>Distance from fine textured soils</td>
</tr>
<tr>
<td>NDVI = (NIR – RED)/(NIR+RED)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude (DEM), slope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land cover (distance from forest)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EPIDEMOIST – soil moisture proxies

- Link with *C. imicola* life cycle (larvae, pupae)
- Relation suggested by Conte *et al.* (2007)

Spatial and temporal soil moisture variations are addressed by soil moisture proxies → model predictors

- Link with *C. imicola* life cycle (larvae, pupae)
- Relation suggested by Conte *et al.* (2007)
EPIDEMOIST – soil moisture proxies

- **Predictor requirements**
 - Related to top 5cm soil moisture content
 - From remote sensing data only
 - Applicable over heterogeneous landscape
 - Spatial resolution: 10m – 1km
 - Temporal resolution: days – weeks

- **Derived from RS**
 - Optical sensor: MODIS
 - Radar sensor: ASAR
EPIDEMOIST – soil moisture proxies

Derived from optical RS

- Response of vegetation to water stress
- Indices from VIS, NIR and MIR

- Normalized Difference Water Index (NDWI)
- Normalized Difference Vegetation Index (NDVI)

Deseasoned to eliminate the effects of the yearly phenological cycle
EPIDEMOIST – soil moisture proxies

Derived from optical RS

Deseasoned NDVI 8/10/2009
Deseasoned NDWI 8/10/2009

Wetter than average
Average moisture
Dryer than average
EPIDEMOIST – soil moisture proxies

Derived from optical RS

- “Triangle method” → combinations of VIS, NIR and TIR
- Evapotranspirative cooling at higher moisture levels

<table>
<thead>
<tr>
<th>Decreasing wetness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry pixels</td>
</tr>
<tr>
<td>(evapotranspiration = low)</td>
</tr>
<tr>
<td>Wet pixels</td>
</tr>
<tr>
<td>(evapotranspiration = high)</td>
</tr>
</tbody>
</table>
EPIDEMOIST – soil moisture proxies

Derived from optical RS

- Thermal inertia \(\rightarrow\) combinations of VIS, NIR and TIR
- Day-night temperature difference decreases with increasing soil moisture
EPIDEMOIST – soil moisture proxies

Derived from radar RS

- Radar backscatter function of
 - Soil moisture
 - Soil roughness
 - Vegetation cover
- Change detection
 - Variation in soil moisture at shorter timescales than variation in roughness and vegetation
 - Change backscatter \sim change soil moisture
- Principal Components Analysis
 Influences on backscatter separated or grouped
EPIDEMOIST – soil moisture proxies

Validation of proxies
- In-situ soil moisture measurements
 - Gravimetric (soil sample)
 - Volumetric (TDR)
- Rainfall (meteorological data)
Soil moisture proxies

- Currently applied soil moisture proxies are too noisy
- Their inclusion into the C. imicola distribution model is not yet satisfactory
 - Further testing on a study area in Spain
 - Introduce state-of-the-art speckle reducing algorithms
http://epidemoist.avia-gis.com

Thanks for listening!