

SR/00/100

5-year thematic pole project

Partners:	<u>UG-WRM</u> :	Niko Verhoest (Coordinator) Laboratory of Hydrology and Water Management Research Unit "Water Resources Monitoring", Ghent University
	UCL:	Marnik Vanclooster
		Department of Environmental Sciences and Land Use Planning Université catholique de Louvain
	UG-KERMIT:	Bernard De Baets
		Department of Applied Mathematics, Biometrics and Process Control Research Unit "Knowledge-based Systems", Ghent University
	<u>UG-HM</u> :	Valentijn Pauwels
		Laboratory of Hydrology and Water Management Research Unit "Hydrologic Modeling", Ghent University
	<u>CRP-GL</u> :	Lucien Hoffmann Centre de Recherche Public – Gabriel Lippmann Department of Environment and Agro-Biotechnologies, Luxembourg

The overall goals of the project

- to explore new strategies to integrate radar remote sensing, hydrologic, and hydraulic modelling for water management purposes through data assimilation, with an emphasis to flood forecasting
- to demonstrate the applicability of advanced data assimilation schemes for a set of water management problems.

Involves:

- \checkmark soil moisture retrieval from advanced hydro-geophysical techniques, focusing on GPR
- ✓ retrieval of soil moisture from SAR data, including uncertainty assessment
- ✓ flood delineation through fusion of SAR data and high accuracy digital elevation models
- \checkmark scaling of soil moisture based on GPR and SAR observations
- ✓ assimilation of multi-scale soil moisture observations into hydrologic models
- ✓ coupling of a hydrologic and a hydraulic model
- ✓ designing adequate data assimilation algorithms for the coupled system

Flowchart of the project

Test sites

Dijle catchment

Projected Coordinate System: Belge Lambert 1972 Land Cover class from Corine Land Cover, Région Wallonne

Test sites

Alzette catchment

Field campaigns

25/01/2008 First ENVISAT-ASAR acquisition over Alzette site
07/02/2008 First ALOS PALSAR acquisition over Dijle site

Website http://lhwm.ugent.be/HYDRASENS

RASENS project is sponsored by the Belgian Science Policy in the framework of the Research of the Formattion (STEREO II) (Support to the exploitation and Research in Earth
n) n aim of this project is to investigate how radar remote sensing of soil moisture and flood extent d to improve predictions of hydrologic and hydraulic models through data assimilation. Within this ect different research items can be discerned. scale soil moisture monitoring using ground penetrating radar (GPR) techniques noisture and flood extent monitoring using space borne Synthetic Aperture Radar (SAR) imager state-of-the-art backscattering models and techniques tainty assessment on soil moisture estimates based on possibility theory ing a hydrologic and hydraulic model for improved flood forecasting mentation and development of several data assimilation techniques ect consists of 5 partners and employs 5 researchers and 1 technical staff member