Imaging and Imagining the spatio-temporal variations of photosynthesis – optical remote sensing to scale physiological changes of the photosynthetic apparatus from the leaf to the globe

ÜLICH

Uwe Rascher

Imaging and Imagining the spatio-temporal variations of photosynthesis – optical remote sensing to scale physiological changes of the photosynthetic apparatus from the leaf to the globe

Joe Berry: "Remote Sensing of photosynthetic

efficiency is the holy grail of plant physiology and remote sensing"

Scaling regulation of photosynthetic efficiency

Regulation of basic biophysical process of plant life

Scaling regulation of photosynthetic efficiency 🕗 JÜLICH

Regulation of basic biophysical process of plant life

Determines biomass production in agrosystems

4. Mai 2009

slide 5

Scaling regulation of photosynthetic efficiency

Regulation of basic biophysical process of plant life

Determines biomass production in agrosystems

Governs plant mediated exchange in ecosystems

Scaling regulation of photosynthetic efficiency

Regulation of basic biophysical process of plant life

Determines biomass production in agrosystems

Governs plant mediated exchange in ecosystems

Essential to model global carbon and water cycle

Scaling regulation of photosynthetic efficiency

Regulation of basic biophysical process of plant life

Determines biomass production in agrosystems

Governs plant mediated exchange in ecosystems

Essential to model global carbon and water cycle

Chlorophyll Fluorescence

Chlorophyll fluorescence is emitted from the core of the photosynthetic machinery and is directly correlated to efficiency of photosynthesis

courtesy of L. Nedbal

Fluorescence can be used to measure the spatio-temporal variations of photosynthesis

Heterogeneity of photosynthesis I: Chloroplasts and anatomy

Baker et al. (2001) *J. Exp. Bot.* **52**, 615-621.

Walter, Rascher & Osmond (2004) *Plant Biol.* **6**, 184-191.

Heterogeneity of photosynthesis II: Physiology

Rascher et al. (2001) *Proc. Natl. Acad. Sci. USA* **98**, 11801-11805.

Heterogeneity on anatomically uniform leaves

Example: tropical rainforest of Biosphere 2: Drought effects from the leaf to the ecosystem

Closed system on 42m x 42m with 15m tall canopy, about 110 species

drought reversibly reduced maximum electron transport rate at photosystem II: functional diversity on the leaf level

Rascher et al. (2000) *Plant Cell Environ. 23*, 1397-1405. Rascher et al. (2004) *Plant Cell Environ.*, *27*, 1239-1256. 4. Mai 2009

Pterocarpus indicus

Inga cf. sapindoides

drought reversibly reduced ecosystem CO₂ uptake

Rascher et al. (2004) *Plant Cell Environ.*, 27, 1239-1256. 4. Mai 2009

MODIS: "moderate resolution imaging spectro- 🕗 JÜLICH radiometer"

Net Primary Productivity (kgC/km2/year)

http://earthobservatory.nasa.gov/Newsroom/NPP/npp.html

 Table 2-1. Canopy Structural Attributes of Global Land Covers From the Viewpoint of Radiative Transfer Modeling

	Grasses and					
	Cereal Crops	Shrubs	Broadleaf Crops	Savannas	Broadleaf Forests	Needle Forests
Horizontal heterogeneity	no	yes	variable	yes	yes	yes
Ground cover	100%	20-60%	10-100%	20-40%	> 70%	> 70%
Vertical heterogeneity						
(leaf optics and LAD)	no	no	no	yes	yes	yes

4. M

MODIS: "moderate resolution imaging spectro- 🗾 JÜLICH radiometer"

>70%

yes

Gro in greenness (NDVI) and empirically modulated Ver

by maximum and minimum temperature

4. Ma

Mapping photosynthesis from space: hyperspectral reflectance - fluorescence

Hyperspectral reflectance: Photochemical Reflectance Index (PRI)

PRI: test case, genetically modified *Arabidopsis* **ULICH**

npq4-1: reduced NPQ
L5: over-expressed NPQ

Rascher et al. (2007) *Photogrammetric Engineering and Remote Sensing*, **73**, 45-56 ^{4. Mai 2009}

Soyface: Remote Sensing of structure and function

Fluorescence: active laser induced fluorescence transients, LIFT

Quantification of photosynthetic efficiency of up to 50 meters

^{4.} Ma Kolber et al. (2005) *Photosynthesis Research*, 84, 121-129

LIFT can be used to map distribution of photosynthesis within the canopy

Rascher & Pieruschka (2009) *Precision Agriculture*, DOI 10.1007/s11119-008-9074-0 slide 22

FLEX - FLuorescence EXplorer: a remote sensing approach to quantify spatio-temporal variations of photosynthetic efficiency from space

A proposed mission to observe photosynthetic activity from space

U. Rascher on behalf of the FLEX Team and ESA's Mission Assessment Group

Chlorophyll Fluorescence (1)

Chlorophyll fluorescence is emitted from the core of the photosynthetic machinery and is directly correlated to efficiency of photosynthesis

courtesy of L. Nedbal

Chlorophyll Fluorescence (2)

Chlorophyll fluorescence is emitted from the core of the photosynthetic machinery and is directly correlated to efficiency of photosynthesis

> The fluorescence signal is shifted to longer wavelengths

Chlorophyll Fluorescence (3)

4. Mai 2009

Chlorophyll Fluorescence (4)

However, the fluorescence signal is only 2-5 % of the reflected light and thus cannot not be measured with classic spectroscopy

Earth atmosphere: a wavelength selective filter

Retrieval concept: Fraunhofer line discrimination (FLD)

- Solar and earth atmosphere is a spectrally selective filter
- Two oxygen absorption bands (O₂-A and O₂-B) are at the right spectral region for fluorescence retrieval

Retrieval concept: Fraunhofer line discrimination JÜLICH (FLD)

Fluorescence can be retrieved in the relative dark atmospheric absorption bands according to the Fraunhofer Line Depth (FLD) method.

AIRFLEX Airborne FLEX Simulator

4. Mai 2009

SEN2FLEX campaign: Air-FLEX detects information that is not accessible through classical remote sensing

ÜLICH

Fs (mW m-2 sr-1 nm-1)

First Results from CEFLES 2 campaign (leaf to region)

This multinational campaigns focused in quantitative understanding of photosynthetic efficiency and fluorescence from the leaf to the ecosystem (CEFLES2)

^{4.} Mai 2009 Rascher et al. (2009) *Biogeosciences Discussion*, *6*, 2217–2266.

CEFLES2: First results on the correlation of canopy fluorescence and CO₂ exchange of fields

 $GPP = APAR \cdot LUE$

Dynamic modeling of GPP improves day courses of photosynthetic CO₂ uptake

Damm and 15 others, *Global Change Biol.*, *DOI: 10.1111/j.1365-2486.2009.01908.x.* slide 34

4. Mai 2009

Fluorescence tracks the seasonal activity of actual photosynthesis (annual cycle)

Conclusions and outlook

Spatio-temporal heterogeneity of photosynthetic efficiency scales from the leaf to the ecosystem

Sun-induced fluorescence (and hyperspectral reflectance) have the potential to quantify photosynthesis from space

Challenges:

- Understand the interplay of structural and functional properties of plant canopies
- Mixing of fluorescence in complex canopies scaling fluorescence from leaf to ecosystem
- Better process understanding to translate fluorescence to GPP and specific plant stress

