Integration of raster and vector data for 3D city modelling
URMO3D
 · Orfeo Project OR/02/02
 Dennis Devriendt
 Prof. Rudi Goossens
Presentation overview

• URMO3D…
• …In one sentence
• Objectives
• Study areas
• Methodology
Presentation overview

• Flowchart
• Discussion
• Conclusion
• Related projects: DIFDEM & MAMUD
• VHR sensors deliver high quality stereo pairs with images from one orbital pass (IKONOS, QuickBird, Pleiades)
• Spatial resolution : 1 m
• Suitable for urban 3D modelling

• Improvement of current methods
… in one sentence

Extracting hybrid 3D city model based on raster and vector data from the same data source, i.e. satellite stereo pair (Pleiades)

- Raster = Digital Surface Model
- Vector = 3D features of the built-up area
Goals of the project

• Defining a methodology to model and visualise an urban scene in three spatial dimensions, based on satellite images (future Pleiades)
Goals of the project

‣ Optimising and assessing the accuracy of raster DSM and 3D vector extraction from VHR stereo pairs
‣ Integration of three basic photogrammetric products (DSM, 3D features and orthoimages) in a hybrid 3D city model
‣ Testing the multi-temporal analytical capabilities of the developed model in a rapidly changing urban environment (Cairo, Egypt)
Ghent

2003-09-18 11:07 GMT
Azimuth: 210.4809 degrees
Elevation: 68.83065 degrees

Azimuth: 346.8062 degrees
Elevation: 78.86692 degrees
Cairo

2005-01-20 08:43 GMT

Azimuth: 155.8838 degrees
Elevation: 66.94662 degrees

Azimuth: 52.3463 degrees
Elevation: 68.90756 degrees
Fieldwork Cairo

Measuring Ground Control Points with C-NAV differential GPS
- receiver
- antenna
- laptop
Fieldwork Cairo
Methodology

• Creating a hybrid 3D city model from VHR stereo pairs (raster * vector)
• Using the vector model to compensate for shortcomings of the raster model and vice versa
Raster and Vector Surface Model

• Raster : area covering, suffers from occlusion
• Vector : very good to represent 3D features from built-up area, not all features
Raster and Vector Surface Model
Hybrid Surface Model
Data retrieved from satellite stereopair
Hybrid 3D city model

- Ground Control Points (GCP)
- VHR satellite stereopair
- satellite image metadata (viewing angles)

relative and absolute orientation of the satellite images in epipolar projection => Stereomodel

3D polygons for buildings

raster DSM covering 100% of the area

Remove occlusion from the raster DSM: Results in raster, with no height information for the buildings (from 3D polygons) and their occlusion zone

Interpolate Raster DSM for missing areas

Convert 3D polygons to 3D volumes, retrieving additional information from the interpolated raster DSM

Occlusion map
Optimising raster DSM extraction from satellite stereopair

- Optimal match window & window spacing for the matching algorithm (VirtuoZo software)
- Test on rural and urban area from the same IKONOS stereopair
- All test areas are approx. 1600 by 1300 pixels
Ghent, urban
Cairo urban 1
Ground Control Points (GCP) → VHR satellite stereopar → satellite image metadata (viewing angles) →

relative and absolute orientation of the satellite images in epipolar projection => Stereomodel →

3D polygons for buildings

raster DSM covering 100% of the area

Remove occlusion from the raster DSM: Results in raster, with no height information for the buildings (from 3D polygons) and their occlusion zone

Interpolate Raster DSM for missing areas

Convert 3D polygons to 3D volumes, retrieving additional information from the interpolated raster DSM

Hybrid 3D city model

Occlusion map
Initial raster DSM and 3D features
Combined occlusion map
Raster DSM without occlusion and building
Interpolation

Overestimation height

Effect of occlusion reaches beyond occlusion area
Converting 3D features to solids

New 3D features at ground level.
Any errors in the raster interpolation influence the quality of this product.
Conclusion and future work (1)

- Raster DSM extraction from VHR stereopairs optimised
- Generating occlusion maps: workable method, improvement possible
 - Direct projection of 3D features on raster DSM
 - Influence of vegetation
- Conversion of 3D features to 3D solids
Conclusion and future work (2)

- Continue DSM production and processing for Cairo test sites
- Accuracy analysis for the test areas in Ghent
Questions and discussion