

Integration of raster and vector data for 3D city modelling URMO3D · Orfeo Project OR/02/02 Dennis Devriendt Prof. Rudi Goossens

Presentation overview

- URMO3D...
- ...In one sentence
- Objectives
- Study areas
- Methodology

Presentation overview

- Flowchart
- Discussion
- Conclusion
- Related projects : DIFDEM & MAMUD

• VHR sensors deliver high quality stereo pairs with images from one orbital pass (IKONOS, QuickBird, Pleiades)

- Spatial resolution : 1 m
- Suitable for urban 3D modelling

Improvement of current methods

URM03D ...

... in one sentence

Extracting hybrid 3D city model based on raster **and** vector data from the same data source, i.e. satellite stereo pair (Pleiades)

- Raster = Digital Surface Model
- Vector = 3D features of the built-up area

Goals of the project

• Defining a methodology to model and visualise an urban scene in three spatial dimensions, based on satellite images (future Pleiades)

Goals of the project

- Optimising and assessing the accuracy of raster DSM and 3D vector extraction from VHR stereo pairs
- Integration of three basic photogrammetric products (DSM, 3D features and orthoimages) in a hybrid 3D city model
- Testing the multi-temporal analytical capabilities of the developed model in a rapidly changing urban environment (Cairo, Egypt)

FACULTEIT WETENSCHAPPEN

	×
Ghent	
2003-09-18 11:07 GMT	
Azimuth: 210.4809 degr	rees
Elevation: 68.83065 deg	grees
Azimuth: 346.8062 degr	rees
Elevation: 78.86692 deg	grees

Cairo

2005-01-20 08:43 GMT

Azimuth: 155.8838 degrees Elevation: 66.94662 degrees

Azimuth: 52.3463 degrees Elevation: 68.90756 degrees

Fieldwork Cairo

Measuring Ground Control Points with C-NAV differential GPS

- receiver
- antenna
- laptop

Fieldwork Cairo

Methodology

 Creating a hybrid 3D city model from VHR stereo pairs (raster * vector)

• Using the vector model to compensate for shortcomings of the raster model and vice versa

Raster and Vector Surface Model

• Raster : area covering, suffers from occlusion

• Vector : very good to represent 3D features from built-up area, not all features

Raster and Vector Surface Model

URMO3D – Belgian Earth Observation Day - 12/2/2008 Namur

Data retrieved from satellite stereopair

Optimising raster DSM extraction from satellite stereopair

- Optimal match window & window spacing for the matching algorithm (VirtuoZo software)
- Test on rural and urban area from the same IKONOS stereopair
- All test areas are approx. 1600 by 1300 pixels

URMO3D – Belgian Earth Observation Day - 12/2/2008 Namur

URMO3D - Belgian Earth Observation Day - 12/2/2008 Namur

Cairo

Initial raster DSM and 3D features

Combined occlusion map

Raster DSM without occlusion and

building

Interpolation

Overestimation height

Effect of occlusion reaches beyond occlusion area

Converting 3D features to solids

New 3D features at ground level.

Any errors in the raster interpolation influence the quality of this product

Conclusion and future work (1)

- Raster DSM extraction from VHR stereopairs optimised
- Generating occlusion maps : workable method, improvement possible
 - Direct projection of 3D features on raster DSM
 - Influence of vegetation
- Conversion of 3D features to 3D solids

Conclusion and future work (2)

- Continue DSM production and processing for Cairo test sites
- Accuracy analysis for the test areas in Ghent

Questions and discussion