

POLARIMETRIC SAR INTERFEROMETRY

(PolInSAR)

3rd STEREO/VEGETATION DAY Brussels, 6 May 2004

The amplitude : \rightarrow traditional SAR imagery.

The phase : \rightarrow SAR interferometry (InSAR).

The polarisation : \rightarrow SAR polarimetry (PolSAR).

What is PolInSAR?

PolInSAR = vector InSAR

InSAR \rightarrow height information. PolSAR \rightarrow scattering mechanisms information.

 $PolInSAR \rightarrow height distribution of scattering mechanisms$

InSAR provides height information.

PolSAR provides scattering mechanisms information.

Basic scattering definitions.

The full polarimetric SAR mesures the scattering matrix :

$$\begin{pmatrix} \mathbf{E}_{\mathbf{H}}^{\mathbf{r}} \\ \mathbf{E}_{\mathbf{V}}^{\mathbf{r}} \end{pmatrix} = \frac{\mathbf{e}^{-j\mathbf{k}\mathbf{r}}}{\mathbf{k}\mathbf{r}} \begin{pmatrix} \mathbf{S}_{\mathbf{H}\mathbf{H}} & \mathbf{S}_{\mathbf{H}\mathbf{V}} \\ \mathbf{S}_{\mathbf{V}\mathbf{H}} & \mathbf{S}_{\mathbf{V}\mathbf{V}} \end{pmatrix} \begin{pmatrix} \mathbf{E}_{\mathbf{H}}^{t} \\ \mathbf{E}_{\mathbf{V}}^{t} \end{pmatrix}$$

The scattering matrix can be vectorized into a scattering vector :

$$\vec{k} = \sum_{i} \mu_{i} \vec{w}_{i}$$

A polarimetric image is given by :

 $\mu_i = \vec{k}.\vec{w}_i$

The basis set is arbitrary, but some choices reflect decompositions into elementary scattering mechanisms (e.g., Cloude decomposition).

Polarimetric representations.

The polarimatric radar echo may be described by :

- the scattering matrix \underline{S} ,
- the Müller matrix <u>M</u>,
- the coherency matrix $\underline{\mathbf{T}}$,
- the covariance matrix <u>C</u>, etc.

In the case of a **deterministic** target, these matrices contain the same information: these representation are **EQUIVALENT**.

But for a **random distributed** target : ???

Relationships involving *Müller*, *Scattering* and *Target Coherency* matrices.

The extraction of the information about a random target depends on the matrix used to investigate the scattering phenomena.

Advantages in using the *Coherency* matrix with respect to the *Müller* matrix.

- identification of the correspondence between a measured $\underline{\mathbf{T}}$ and physical scattering mechanisms.
- to describe qualitatively each observed target by a :
 - single,
 - simple,
 - dominant,
 - scattering mechanism.

A Picture Book Example.

S.R. Cloude and K.P. Papathanasiou, "Polarimetric SAR Interferometry", IEEE Trans. Geosci. Remote Sensing <u>36(5)</u>, 1551-1656

The Coherence Maps.

Decomposition Into Coherence-Optimized States.

Interpretation through a MODEL.

PROJECT OBJECTIVES.

<u>PolInSAR processing</u>:

Theory, incl. literature review, algorithmics and calibration issues. Processor design and coding.

Test data selection.

Transfer of results to modlling and fusion teams.

PolInSAR Physics:

Literature review.

Polarisation states and coherent model analysis.

Scattering mechanisms decomposition.

<u>PolInSAR Fusion Feasibility Study</u>:

Land-cover classification.

Object of interest detection.

<u>PolInSAR Potentialities in Remote Sensing</u>:

Humanetarian demining.

Crisis Management.

PLANNING AND DELIVERABLES.

Epoch (months)	WP ID (Partner)	Description of output
ТО	WP1 (CSL)	Start of WP1
T0 + 6	WP1.1 (CSL)	PolInSAR theoretical study results
T0 + 6	WP2 (UCL)	Start of WP2
T0 + 12	WP1.2 (CSL)	PolInSAR processor
T0 + 12	WP2.1 (UCL)	Polarisation states and coherent model
		analysis for PolInSAR (report)
T0 + 19	WP3 (RMA)	Start of WP3
T0 + 24	WP1.3 (CSL)	Test results
T0 + 24	WP3 (RMA)	PolInSAR fusion feasibility study (report)
T0 + 27	WP2.2 (UCL)	Scattering mechanisms decomposition for PolInSAR (report)
T0 + 27	WP4 (CSL/UCL/RMA/Users)	Start WP4
T0 + 29	WP4 (CSL/UCL/RMA/Users)	Potentialities in RS for PolInSAR (report)