Detection of contaminants in solid matrices and plants

Piet Seuntjens, Alain De Vocht, Christy Huybrechts, Christine Van Hoof, Luc Bertels, Ils Reusen
Detection of contaminants in solid matrices and plants

Piet Seuntjens, Alain De Vocht, Christy Huybrechts, Christine Van Hoof, Luc Bertels, Ils Reusen
Outline

- Problem and objectives
- Methods
- Results
 - Zinc ash roads
 - Vegetation
- Conclusions
Problem

- Heavy metal contamination in the “Kempen”
Problem

- Heavy metal contamination in the “Kempen”
- Zinc ash roads
 - Diffuse geographical occurrence
 - High metal concentrations
 - $6.606 \text{ Pb}, 40.750 \text{ Zn}, 1.613 \text{ Cu (mg/kg)}$
ZINKASSENWEGEN IN PROVINCIE ANTWERPEN EN LIMBURG.
Problem

- Heavy metal contamination in the “Kempen”
- Zinc ash roads
 - Diffuse geographical occurrence
 - High metal concentrations
 - 6.606 Pb, 40.750 Zn, 1.613 Cu (mg/kg)
- Vegetation
 - Toxic plant concentrations
 - Molecular, biochemical and physiological responses to metal stress occur
 - Large polluted area
Maatheide - Lommel
Vegetative stress
Objectives

- Pilot survey to test the feasibility of (hyper)spectral sensors to:
 - Gain additional information on the presence of zinc ash roads
 - Detect metal stress in plants
Methods

- Flight campaign
 - Seven flight-lines Dornier 228
 - CASI2 and SASI sensors
- Ground measurements
 - Ash roads
 - Vegetation
- CASI and SASI image processing
Flight campaign
Ground measurements

- Zinc ash roads
 - Metal concentration in top layer (X-ray fluorescence)
 - Reflectance measurements on 4 ash roads Fieldspec Pro PR (field and lab - dry/wet)
Reflectance of ash roads
Ground measurements

- Vegetation
 - Birch (*Betula pendula*)
 - Five plots, 3-4 individual trees
Birch plots
Ground measurements

Vegetation

- Birch (*Betula pendula*)
 - Five plots, 3-4 individual trees
 - Gas exchange (LCA4 gas analyser with PLC), chlorophyll fluorescence (FIS) and reflectance (Li-Cor 1800 and FieldSpec Pro FR)
 - Metal concentrations (AAS)
- Zinc concentration in 2-y needles of Pine (*Pinus sylvestris*) (AAS)
CASI-SASI image processing

- Zinc ash roads
 - Corrected SASI-data
 - Filtered using semi-interactive smoothing algorithm (Vito)
 - Library of reference spectra of pure zinc and asphalt roads
 - Library mixed with neighboring vegetation pixels: temporary library set
 - Spectral Angle Mapper
 - Low reflectance in SWIR
CASI-SASI image processing

- Vegetation
 - Corrected CASI2 and SASI
 - Smoothing algorithm
 - Selection of regions of interest for pine
 - Spectral Angle Mapper: pine mask
 - Edge Green First derivative Normalized difference (EGFN) calculated for each pixel
Results

- Zinc ash roads
 - Three bands: R (power), G (fraction) and B (spectral angle)
 - Ash roads: green
Zinc ash roads
Zinc ash roads
Vegetation

- Metal concentration in Birch leaves
- Gas exchange (gs: stomatal conductance)
- Fluorescence (M: max. Fluor. Int.)
- Reflectance (EGFN)
Gas exchange

Box & Whisker plots for different gas exchange measurements:
- GS
- CD
- CU
- PB

The plots show the distribution of values with mean, standard deviation (SD), standard error (SE), and confidence intervals.
Fluorescence

<table>
<thead>
<tr>
<th>M</th>
<th>Phi</th>
<th>Rfd</th>
<th>Vi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot 1</td>
<td>Plot 2</td>
<td>Plot 3</td>
<td>Plot 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot 5_1</td>
<td>Plot 5_2</td>
<td>Plot 5_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fluorescence

CDMGKGS vs. MEAN
MEAN = 97.104 + 10.988 * CDMGKGS
Correlation: r = .84542

CUMGKGS vs. MEAN
MEAN = 103.11 + 3.8788 * CUMGKGS
Correlation: r = .57454

ZNMGKGS vs. MEAN
MEAN = 123.03 + 0.00870 * ZNMGKGS
Correlation: r = .16397

PBMGKGS vs. MEAN
MEAN = 114.97 + 1.5840 * PBMGKGS
Correlation: r = .55449
Reflectance

CD vs. EFGN

EFGN = 0.62331 - 0.01076 * CD

Correlation: r = -0.2685

ZN vs. EFGN

EFGN = 0.63075 - 0.00006 * ZN

Correlation: r = -0.2094

PB vs. EFGN

EFGN = 0.62682 - 0.00366 * PB

Correlation: r = -0.3810

CU vs. EFGN

EFGN = 0.64967 - 0.00766 * CU

Correlation: r = -0.3417
Different sensitivity of stress indicators

\[
\text{Correlation: } r = -0.5793
\]

\[
\text{EGFN} = 0.69660 - 0.00086 \times M
\]
EGFN vegetation stress map
Conclusions

Zinc ash roads

- Distinct zinc ash roads are classified as such
- Misclassification of some roads in respect to the metal concentrations
- No correlation between zinc concentrations in samples and reflectance spectra
Vegetation

- Stress indicators have different sensitivity and robustness
- Relation between aerial reflectance and internal metal concentrations remain unclear
- Further analysis and tests will be needed to verify the aerial stress image
Piet Seuntjens
Vito, Flemish Institute for Technological Research, Integrated Environmental Studies, Boeretang 200, B-2400 MOL, Belgium

Alain De Vocht
Limburgs Universitair centrum, Centre for Environmental Sciences, Environmental Biology, Universitaire Campus – Building D, B-3590 Diepenbeek, Belgium

Christy Huybrechts
Limburgs Universitair centrum, Centre for Environmental Sciences, Molecular and physical plantphysiology, Universitaire Campus – Building D, B-3590 Diepenbeek, Belgium

Christine Van Hoof
Vito, Flemish Institute for Technological Research, Environmental Measurements, Boeretang 200, B-2400 MOL, Belgium

Luc Bertels and Ils Reusen
Vito, Flemish Institute for Technological Research, Teledetection and Atmospheric Processes, Boeretang 200, B-2400 MOL, Belgium