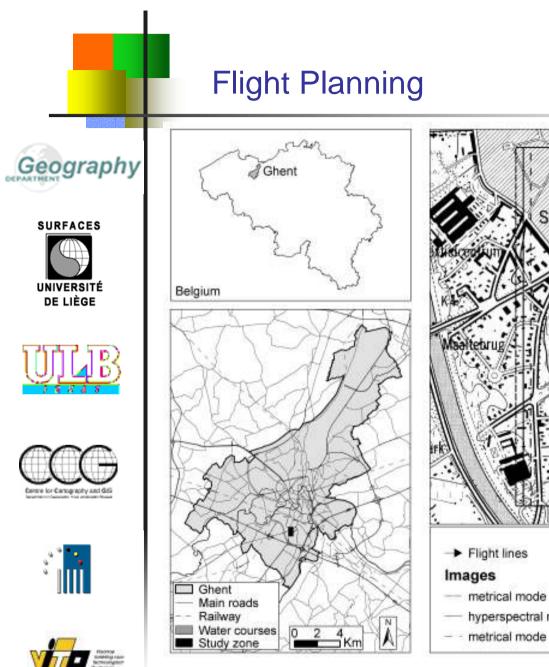
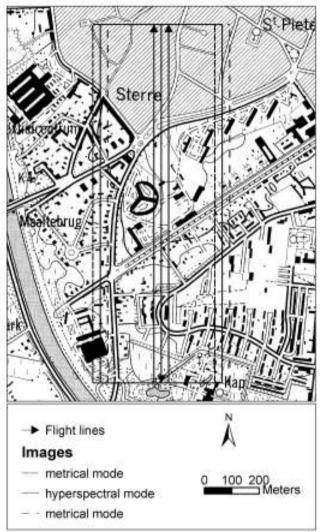


Spatial information extraction for urban areas based on hyperspectral data

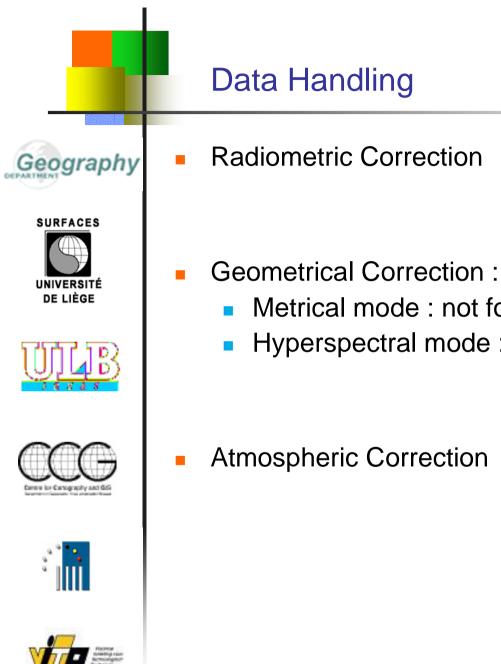
Geography



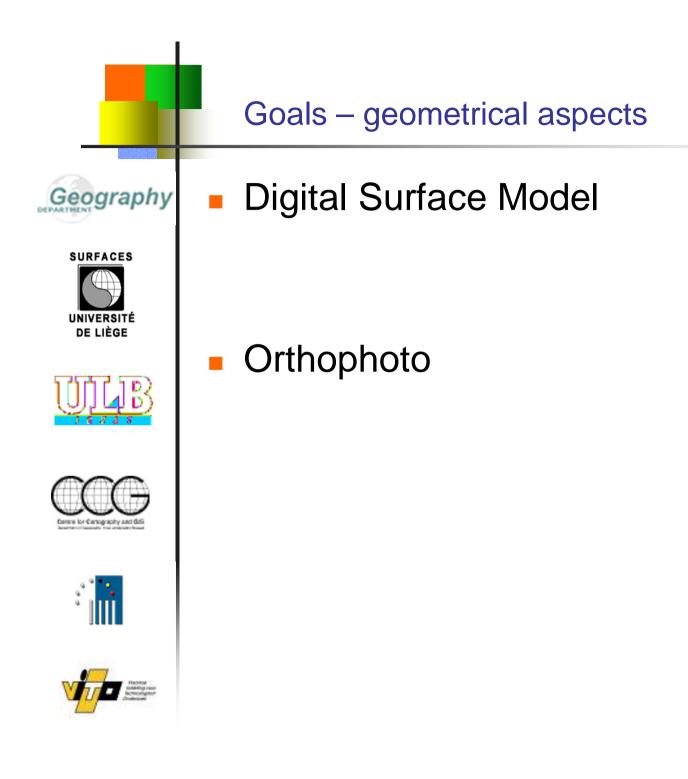


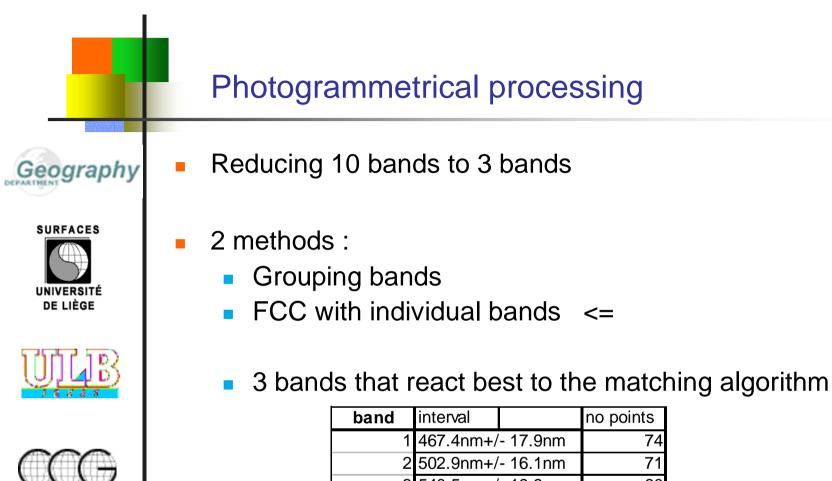
- aim : to extract all different kinds of information over urban and peri-urban environment using hyperspectral data.
- 2 kinds of information : geometric and thematic
- in conjunction with the Stereo-project "Improving spatial information extraction for local and regional authorities using very-high-resolution data". SPIDER

Flight Planning 3 images Geography • 2 in "metric" mode SURFACES Altitude 440 m Resolution 0.52 m UNIVERSITÉ DE LIÈGE 10 bands 80 % overlap between 2 metric images 1 in hyperspectral Altitude 970 m Resolution 1.34 m 48 bands feature for Carton worky and Bit


Ghent

1000 x 200 m





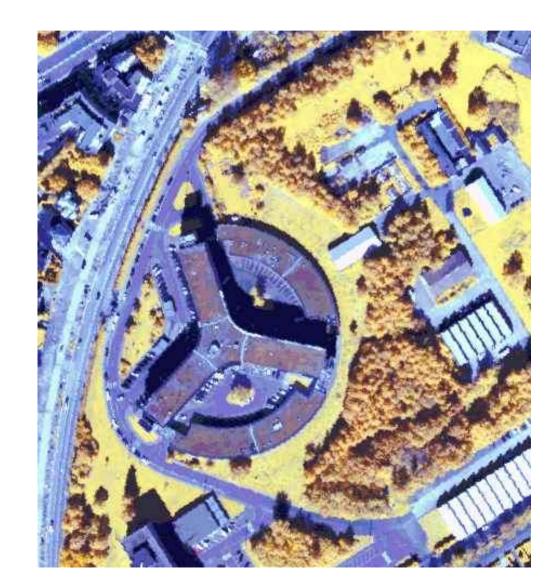
- - Metrical mode : not for terrain
 - Hyperspectral mode : terrain (DSM aerial photo)

Atmospheric Correction

feature for Cartos wohy and BiS

		•	
1	467.4nm+/- 17.9nm	74	
2	502.9nm+/- 16.1nm	71	
3	540.5nm+/- 19.9nm	60	
4	581.1nm+/- 19.1nm	78	
5	639.0nm+/- 10.6nm	49	
6	670.4nm+/- 19.2nm	68	
7	725.9nm+/- 34.6nm	86	
8	795.9nm+/- 33.8nm	101	
9	866.2nm+/- 34.8nm	96	
10	926.0nm+/- 23.3nm	106	
	RMS = 1/5 pixel		
	2 3 4 5 6 7 8 9	1 467.4nm+/- 17.9nm 2 502.9nm+/- 16.1nm 3 540.5nm+/- 19.9nm 4 581.1nm+/- 19.1nm 5 639.0nm+/- 10.6nm 6 670.4nm+/- 19.2nm 7 725.9nm+/- 34.6nm 8 795.9nm+/- 33.8nm 9 866.2nm+/- 34.8nm 10 926.0nm+/- 23.3nm RMS = 1/5 pixel	2 502.9nm+/- 16.1nm 71 3 540.5nm+/- 19.9nm 60 4 581.1nm+/- 19.9nm 60 4 581.1nm+/- 19.1nm 78 5 639.0nm+/- 10.6nm 49 6 670.4nm+/- 19.2nm 68 7 725.9nm+/- 34.6nm 86 8 795.9nm+/- 33.8nm 101 9 866.2nm+/- 34.8nm 96 10 926.0nm+/- 23.3nm 106

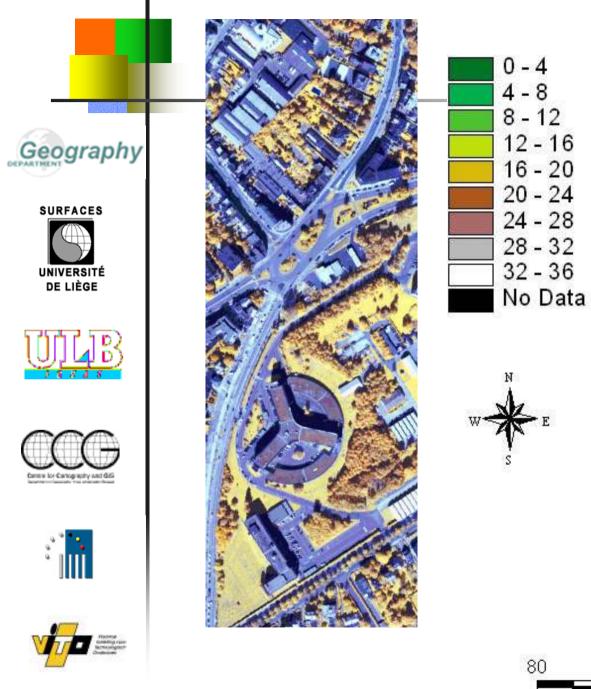
Photogrammetrical processing

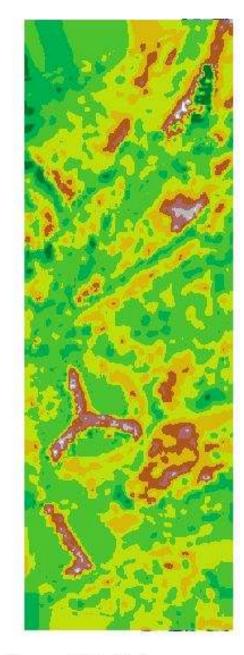

- band 8 R
 band 9 G
 - band 10 B

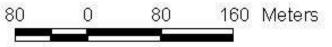
FCC

Photogrammetrical processing

SURFACES


UNIVERSITÉ


DE LIÈGE


entre los Cartos actividad da

- Relative orientation
 - Δt between images : shadows have moved
 - 15 min = 1.3 m for 20 m building
 - manual : 70 points
- Absolute orientation
 - Ground level : 9 points
 - AO with only these points resulted in no Z results in stereomodel
 - Rooftop Level : 4 points
 - Problem : B/H = 0.1 to 0.2
- Automatic parallax matching, DEM extraction and orthophotogeneration

Conclusion

better spatial resolution, better result

. . .

larger area

- cross-track stereo overlap with 2 nadir images not ideal for good stereomodel
- suggestion : nadir image + backward image
 nadir image + forward image

Classification of hyperspectral data

Extract detailed thematic information from hyperspectral

Topics:

Objective:

- Band reduction
- Different classification strategies
 - Pixel-based

data for urban areas

- Region-based methods
- Postclassification

feature for Carton worky and Bit

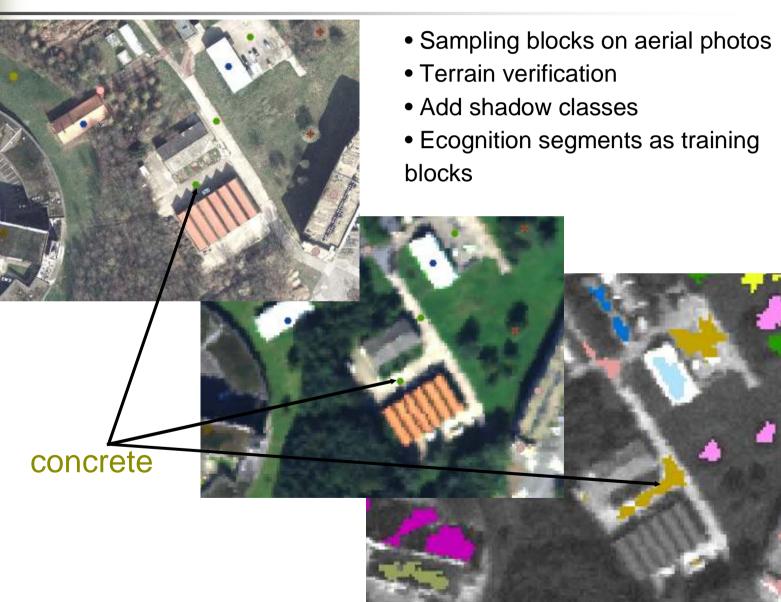
Land-cover legend

UNIVERSITÉ DE LIÈGE

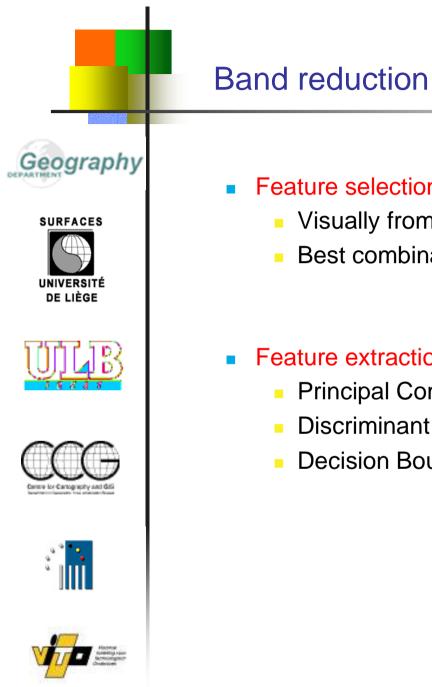
	LAND COVER CLASS	
grey surface	grey slate and tile	
	roofing	
	light roofing dark roofing	
	grey gravel	
	concrete	
	asphalt road	
	light road material	
red surface	red tile exposed red tile not exposed red tile red gravel	

	LAND COVER CLASS
reflecting surface	metal light metal dark metal
vegetation	grass
	shrub and tree
	moss
shadow	shadow vegetation
	shadow non vegetation

Collection of training data



Collection of validation data



CAPI based on aerial photo and terrain verification
random sampling in CAPI
removal of points too close to training sites

Feature selection

- Visually from signature profiles
- Best combination of bands (Bhattacharryya distance)

Feature extraction

- Principal Components Analysis (PCA)
- **Discriminant Analysis Feature Extraction (DAFE)**
- **Decision Boundary Feature Extraction (DBFE)**

Land-cover classification approach

Comparison of results obtained with:

Different classifiers

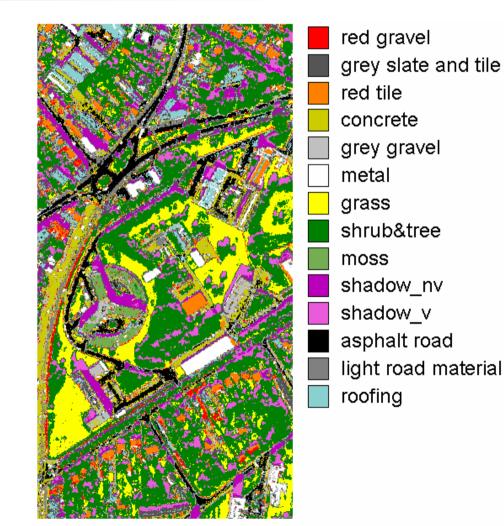
- Pixel-based approach
 - Minimum distance classification (MD)
 - Maximum-likelihood classification (ML)
- Region-based classification
 - ECHO classifier (ML)
 - eCognition (MD)
- Different band reduction techniques
- Results:
 - Kappa's between 0.47 and 0.73

Geography

SURFACES

Pixel-based classification

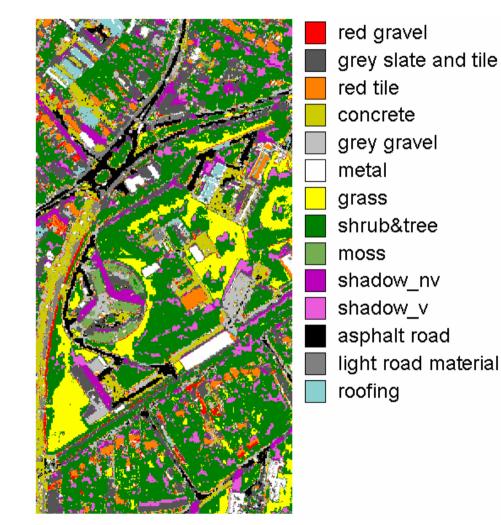
SURFACES UNIVERSITÉ DE LIÈGE



ML DBFE (7 features): Kappa 0.73

Region-based classification

SURFACES UNIVERSITÉ DE LIÈGE



ECHO DBFE (7 features): Kappa 0.70

Conclusions classification results

Classification Kanna's a

Band reduction

- Kappa's are high considering the number of classes (0.73 for 14 classes)
- Best results for maximum-likelihood

Best results DBFE (7 bands)

Region-based groups too many pixels together

Problems

- Clutter in pixel-based classifications
- Shadows

Postclassification

Two-step approach:

- Rule-based classification or grouping of land-cover regions
 - Using:
 - Region-based metrics (area, shape,...)
 - Properties of neighbouring regions
 - Ancillary data, e.g. DSMs, vector maps
- Post-classification filtering
 - Class specific rules

Geography

SURFACES

UNIVERSITÉ

DE LIÈGE

ML classification, DBFE (7 features)

red gra∨el grey slate and tile red tile concrete grey gra∨el metal grass shrub&tree moss shadow_n∨ shadow_v asphalt road light road material roofing

DSM threshold (12 m)

< 12 m</pre>> 12 m

Geography

Intersection ML – DSM threshold

red gravel (<12m) grey slate (<12m) red tile (<12m) concrete (<12m) grey gravel (<12m) metal (<12m) grass (<12m) shrub (<12m) moss (<12m) shadow_v (<12m) shadov nv (<12m) asphalt road (<12m) light road mat (<12m) roofing (<12m) red gravel (>12m) grey slate (>12m) red tile (>12m) concrete (>12m) grey gravel (>12m) metal (>12m) grass (>12m) trees (>12m) moss (>12m) shadow_v (>12m) shadow_nv (>12m) alsphalt road (>12m) light road mat (>12m) roofing (>12m)

Postclassification (2 levels)

Postclassification (1 level) Kappa: 0.78

red gravel
grey slate and tile
red tile
concrete
grey gravel
metal
grass
shrub&tree
moss
shadow_nv
shadow_v
asphalt road
light road material
roofing

ML classification DBFE Kappa: 0.73

SURFACES

UNIVERSITÉ DE LIÈGE

Advantages

- Higher accuracy, Kappa = 0.78
- Strong reduction of clutter, better structure
- Strong reduction in amount of shadow
- Better performance than region-based (ECHO)

Problems

- Quality of DSM
- DSM threshold
- Additional rules are needed (shape, context larger than neighbourhood)

General Conclusions

SURFACES

UNIVERSITÉ

DE LIÈGE

serve to Canon why and G

Geometrical issues:

- Low B/H ratio
- Nadir + backwards/forwards

Thematic issues:

- Thematically very detailed land-cover maps
- High accuracy
- Maximum likelihood + Band reduction
 - Pixel based + DBFE
- Postclassification
 - Increases accuracy
 - Improves structure
 - Removal of shadow

