

The use of rapid repeat-pass airborne data for the determination of water velocities in near coastal environments

Tim Malthus¹, Richard Hedger², Andrew Folkard³
1 School of GeoSciences, Edinburgh University
2 University of Laval, Quebec
3 Department of Geography, Lancaster University

Supported by: SEPA, SNIFFER, NERC

Department of Geography

Introduction - Challenges

- Near-coastal waters are highly dynamic and spatially variable environments
- Scale limitations of satellite sensors
- Adding value
- Need for suitable methods for obtaining physical quantities (e.g. velocity)
- Ocean colour/temperature, could be used as 'tracers' for dynamical processes
- Data are based in the 'real world'
- Allows model parameterisation and validation

Maximum cross - correlation

- Objective (operator independent)
- Based on cross-correlation of pattern between two sequential images
- Widely used at the meso-scale on coarse resolution imagery
- Detects translations but not rotation or deformation
- Accuracies are dependent on good geometric correction

• To evaluate the extent to which accurate and useful surface velocity maps can be derived in a turbid estuarine environment from short time-lag repeat airborne remotely sensed data

Objective

Kirkcudbright Bay, Solway Firth

Solway Firth ebb tide velocities ~ 0.4 to 0.8 m sec⁻¹

Department of Geography

Image data collection

- Used ATM data
- May and September imaging
- Rapid, repeat-pass overflights (5 10 min intervals), during part of a high to low tide
- North-South direction
- 12 to 16 repeat images
- *In situ* drogue measurements (3), positioned using a Geodimeter

Drogue results

Released mid-bay ~ 10:30 am Monitored to ~ 12:10 pm

Image data processing

- Geometric correction
 - Supported by on-board navigation data (GPS and plane attitude)
 - Correction to 5 m resolution and image-to-image registration
- Processed to 'indices' of
 - Sea surface temperature (Band 11)
 - Chlorophyll-a (Band 3 : Band 2 ratio)
- Not atmospherically corrected

Thermal imagery, May

• Coherent patterns over 13 separate images

 Approximately 1¹/₂ hours in time

September imaging

Chlorophyll

Velocity calculations

- Subset to Ross Island area
- Processed image data smoothed using a 30 x
 30 mean filter
- MCC used to calculate velocities
- Velocity vectors smoothed separately in both *x* and *y* directions

Image 1 Template window 30 x 30 pixels

Searching window 90 x 90 pixels

Image 2

Resulting vectors

Department of Geography

Chlorophyll index

u

m

I

k

i

h

fs

e

d

0

q

R.

abcdefghijklmn

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

10:10

Thermal index

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

10:10

10:20

Smoothed velocity vectors

Chlorophyll image

Thermal image

At the wider scale

1 2 3 4 5 6 7 8 9 10 **10:10** 2 3 4 5 6 7 8 9 10 **10:20**

Unsmoothed vectors

k lmnopqrstuvw

abcdefghi

1 2 3 4 5 6 7 8 9 10

Conclusions

- Approach offers unique insight into flow and residual transport processes (local scale)
- Could not otherwise be obtained at fine scale by other means (e.g. moored current meters)
- Identifies complexity at a range of scales
- Powerful technique for the improvement of CFD modelling approaches and dispersion studies in bays and estuaries
- Unique to airborne imaging only means of meeting the temporal and spatial requirements

- Possible to analyse velocities based on water quality properties
- Different vector fields produced by:
 - Temperature images (skin surface)
 - Chlorophyll images (deeper)
- Offers indication of 3-D behaviour

Limitations, future work

- Effectiveness of MCC is reduced by
 - > Homogeneity
 - > Diffusion of pattern at the scale of the cell
 - ➤ Constancy of pattern
- Future work
 - Refinement of the MCC technique
 - Determination of optimal scale for analysis
 - Alternative methods (neural networks, surface annealing)