AIRBORNE HYPERSPECTRAL IMAGING

DO’S and DON’TS

Herbert Ripley, FRSPSoc
Hyperspectral Imaging Limited
70 Park Road, Unit D
Elmsdale, Nova Scotia
Canada, B2S 2L2
HYPERSPECTRAL IMAGING LIMITED CONDUCTS CONTRACT AERIAL HYPERSPECTRAL SURVEYS AROUND THE WORLD. OUR SERVICES INCLUDE DATA COLLECTION, DATA ANALYSIS AND DATA MAPPING. COMPANY PRINCIPALS HAVE EXTENSIVE PROJECT EXPERIENCE. THE PRINCIPAL COMPANY FOCUS IS IN THE COASTAL MARINE SECTOR.
PROJECT ACTIVITY
TODAY’S SESSION

- the technology
- planning an airborne survey (design and layout of flight lines, things to avoid)
- execution of the survey (type of aircraft to use, when to fly)
- data pre-processing (geocorrection, atmospheric correction)
- brief overview of data analysis
THE BASIC TECHNOLOGY
THE SPECTRUM
ENERGY INTERACTION - EARTH

Energy incident on a surface will be:
- Reflected, transmitted, absorbed

\[E_I(\lambda) = E_R(\lambda) + E_A(\lambda) + E_T(\lambda) \]

\[E_I(\lambda) = \text{Incident energy} \]
\[E_R(\lambda) = \text{Reflected energy} \]
\[E_A(\lambda) = \text{Absorbed energy} \]
\[E_T(\lambda) = \text{Transmitted energy} \]
A digital image is a two-dimensional array of elements where each element represents some measure or characteristic of the feature of interest.

Elements are assigned a digital number which is converted to a grey shade for visual representation.

A colour image is formed by the display of images through colour filters.
SPECTRAL REFLECTANCES

![Graph showing spectral reflectances for different materials such as vegetation, soil, and water. The graph displays reflectance values across different wavelengths, indicating the Thematic mapper and Landsat 4, 5 markers. The graph also highlights the visible light range and the near and far infrared regions.](herb@hyperspectralimage.com)
Remote Sensing – need to think of resolution in 3 ways

Spatial Resolution - ability to detect ground features (size)

Spectral Resolution - ability to subdivide EM spectrum

Radiometric Resolution - sensitivity of measurement
Spectral resolution describes the ability of a sensor to define wavelength intervals.

Finer the spectral resolution, the narrower the wavelength range for a particular channel or band.
Radiometric resolution describes ability to discriminate very slight differences in energy.

Finer the radiometric resolution, the more sensitive to detecting small differences in energy.

- 4 bits to record the data
 \[2^4 = 16\] digital values

- 8 bits to record the data
 \[2^8 = 256\] digital values

\textit{casi550 is now a 14 bit sensor!}
DATA CONCEPT

- Conceptually, hyperspectral or multispectral images comprise "layers" or bands of 2 dimensional arrays.
- Bands represent discrete wavelength intervals.

Major difference is the number of bands.
Multispectral versus Hyperspectral

- so what really is the difference?
What spectral range do hyperspectral sensors cover?

... Is it 400 – 1000 nm

or

... Is it 400 – 2500 nm
ATMOSPHERIC WINDOWS
What does this tell us??

- all sensors have to deal with the same issues
- signal to noise is a critical issue, especially as you get further out in the spectrum
- significant issues caused by atmosphere must be dealt with
AIRBORNE SYSTEMS

- *casi* (casi, casi2, casi550.., SASI)
- AVIRIS
- AISA (plus, Eagle, Birdie)
- PROBE1
- HyMAP
- MASTER
SATELLITE SYSTEMS

- HYPERION
- MERIS
- MODIS
- CMODIS
- ASTER
- GLI
PROJECT PLANNING

Or perhaps better stated

PAY ME NOW OR PAY ME LATER
MANY FACTORS HAVE TO BE CONSIDERED AT THIS STAGE……..

- WHEN TO FLY
- WHAT BANDSET
- WHAT RESOLUTION
- SIZE OF AREA
- SPATIAL ACCURACY
- GROUND DATA COLLECTION
- HOW TO FLY (direction, flight line order)
POSSIBLE CHOICES

- Time of day
- High tide – low tide
- Time of year
CATS – Camera Target Sensor Geometry

- Solar elevation differences have significant effect
- At 40 degree latitude, given an identical imaging time, brightness values can change by a factor of 40% between summer and fall
PICKING A BANDSET

- How many bands
- what spectral resolution
- what specific wavelengths
WHAT SPATIAL RESOLUTION TO PICK

- low res means fewer flight lines
- higher res means more lines, more detail
- pixel size is influenced by aircraft speed
STUDY AREA SIZE

- relative to pixel resolution
- relative to constraints (low or high tide)
- time of year
- ground data collection
SPATIAL ACCURACY

- what is the intended use of the data
- is very accurate x,y important
- what are technical implications
- what are cost implications
INERTIAL MEASUREMENT UNITS

- bring high accuracy
- have implications on data collection
- more time needed to data process
- generally mean higher costs
- Increased sidelap
- Flown over area with prominent features
- Must be flown with same configuration
Airborne Imaging Spectroscopy Workshop

herb@hyperspectralimage.com
GROUND DATA COLLECTION

- does the aircraft have to be over the area at the same time

- will the ground team have spectral targets that need to be flown

- time implication, cost implication
PLANNING YOUR FLIGHT LINES

- what orientation?
 - east/west
 - other
- overlap
- effect on flying
TECHNICAL ISSUES
(Things that jump up and bite you if you are not careful)
Uneven illumination across an image caused by a number of factors
Cross Track Illumination

- Another manifestation of this effect occurs in airborne digital image data
Horizontal Banding

- Occurs in low lighting conditions

- Noise dominates – low S/N level
- correction difficult – sufficient redundancy in other bands of hyperspectral set

herb@hyperspectralimage.com
Vertical Striping

Original image

Corrected image

herb@hyperspectralimage.com
Flightline Radiance Variations

- Differences in the overall brightness of flightlines
- Differing illumination conditions
Flightline Radiance Variations

- Example of CASI data
- Interesting to note the frequency of variability
Atmospheric Interaction
- The next step - atmosphere
BUT WHEN IT WORKS...WOW THE DATA CAN BE GOOD!!
Airborne Imaging Spectroscopy Workshop
DATA COLLECTION SEPT 2005

MOSAIC OF 12 casi FLIGHT LINES
LETS LOOK AT SOME ACTUAL PROJECTS
AND DISCUSS SOME SPECIFIC USE OF
WHAT WE HAVE BEEN TALKING ABOUT
Airborne Imaging Spectroscopy Workshop

herb@hyperspectralimage.com
PROJECT STATS:
- TWO WEEK DATA COLLECTION PERIOD
- 250+ FLIGHT LINES FLOWN
- 14 SPECIFIC AREAS COVERED
- 150 GIGABYTES OF RAW DATA COLLECTED
MOSAIC OF 12 casi FLIGHT LINES

herb@hyperspectralimage.com
GOLDEN ODESSEY

GOLDEN SHADOW
MOVING AIRCRAFT ON DECK
CESSNA 206 BEING LOWERED INTO WATER
Summary of CASI Dataset

- **Amount of CASI data collected**

<table>
<thead>
<tr>
<th>ISLANDS PLANNED/FLOWN</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA PLANNED</td>
<td>850 SQ KMS</td>
</tr>
<tr>
<td>AREA FLOWN</td>
<td>815 SQ KMS (96%)</td>
</tr>
<tr>
<td>FLIGHT LINES PLANNED</td>
<td>139 LINES</td>
</tr>
<tr>
<td>FLIGHT LINES FLOWN</td>
<td>133 LINES (96%)</td>
</tr>
<tr>
<td>DATA VOLUME (RAW)</td>
<td>65 gbytes</td>
</tr>
<tr>
<td>DATA VOLUME PROCESSED (est)</td>
<td>150 – 175 gbytes</td>
</tr>
</tbody>
</table>
CESSNA 210 – TYPICAL AIRCRAFT USED TO FLY casi
Airborne Imaging Spectroscopy Workshop

casi SENSOR AS INSTALLED IN AIRCRAFT

(note presenters foot in lower right corner)