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The of this project Is to detect the presence
and the concentration of polluted gas compounds in the
atmosphere using the airborne MWIR and LWIR imaging
spectroscopy data.

Schematic view
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B MWIR (~3 to ~5 um) and LWIR (~7.5 to ~13.6 pm) remo te
sensing utilise the EM spectrum;

@ Day and night capability;
E Solar influence low to negligible;

E Many chemical compounds have spectral ‘signature’ in
these wavelengths. —
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Total Petrochemicals

Petro production (k ton/year)
Emission (ton/year)

CO

SOx

NOx

Thin dust

Total
16,760.0

1,682.6
12,696.0
4,976.6
959.8

Nynas Pertroleum

Nynas
1,200.0
8.9

207.0
83.4



Data Collection
AHS-160 data campaign 16 June 2005, in two flight lines and

Infrared Radiation
Pyrometer

TO

ASD spectrometer SOC 400-T reflectometer
0.45-2.5 pm 2.0-25.0 ym
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PCA analysis VNIR

R:band9, G:band7, B:band2
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The angle between two vectors = and t in the 3D space can be obtained by
considering the scalar product or dot product between them as follows:
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Morning image: regions of interest “dock”, locations and corresponding spectra.
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Plume classification
using SAM (morning)
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A mixed pixel containing p spectrally distinct materials, denoted by the i x I
vector #(x.y) can be described by the linear model:

_r'.:...". i :I _1|.1r_|| :...", 1 1 - ,r.l.:-..", 1 ] (21)

Separating the desired signature from the undesired signature, one can reformulate
previous expression as,

., y) = Uxylz,y) + dag(z, y) + iz, y) (2.2)

An operator P can be constructed which projects #(=.4) onto a subspace that is
orthogonal to the columns of U:

P=(I-Uuuh (2.3)
The pixel classification operator 1" that maximizes the signal to noise ratio is
given by:

;= dt P (2.4)



OSP results morning data set
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Orthogonal Subspace Projector with (left) plume (1,1) as reference and (Shore 1 Scheldt, Xilo 5, Scheldt
1, Scheldt 4) as undesired spectral signatures and (right) plume (4,1) as reference and (Shore 1 Scheldt,
Building 1 Total, Xilo 1centre, Xilo 2 edge, Xilo 5, Scheldt 1 and Scheldt 4) as undesired spectral
signatures.
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* Theplumeisinthe dataand it appearsin the 5 first VNIR bands;
* 1t has no significant abundance in the VNIR wavel engths;

* 1t has high reflectance values related to its background spectra;

* |t is detectable over homogeny background.
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CIBR(0.488/0.455,0.513)=
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Segmentation

Plume classification over
PCA(2,4,5)



AHS-Band64 (2.7214-3.686)
+(Mean Filter 3X3)
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Plume Classification

Plume classification based

Plume detection using CIBR SS _
(red-VNIR, black — LWIR) decision fusion



Predict concentrations of a pollutant released at a specific source point.

This model describes the transport and mixing of the
pollutants. It assumes dispersion in the horizontal and vertical direction will
take the form of a normal Gaussian curve with the maximum concentration
at the centre of the plume (unless wind vectors are changing direction
sporadically).

SIDE VIEW
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The Gaussian plume model, which predicts the concentration

(C) of the pollutant at location (X, Y, 2):

- Q
Cx,y,2) = 2nuc,a, 8
2 2 2
Y (z- H) —(z+ H)

C = Concentration of the chemical in air. [M/L*]

Q= Rate of chemical emission. [M/T]

u = Wind speed in x direction. [L/T]

o, = Standard deviation in y direction. [L]

o, = Standard deviation in z direction. [L]

y = Distance along a horizontal axis perpendicular to the wind. [L]
z = Distance along a vertical axis. [L]

H = Effective stack height. [L]

(1)
AH =1.6F,“x** /u (2)
V(T -T
F: 5 a 3
V=8 [ T ] (3)

H

AHH = Plume rise as defined by Briggs equation. [L]
x = Downwind distance. [L]

u = Wind speed in x direction. [L/T]

F, = Buoyancy flux. [L%T?]

¢ = Acceleration due to gravity. [L/T°]

d = Stack diameter. [L]

V = Exit veloeity. [L/T]

T, = Absolute gas temperature. [D]

T, = Absolute air temperature. [D]



Gaussian Plume Model http:ifwww shodor.orgA STER fenvironme ntal/air plume/index. html

Gaussian Plume Model

Please enter the following parameters, then click on the "Run' button:

NOTE! System load can affect performance time! Please be patient!

Run Plume Model |---- Erase this un |

Initial Values:

Height of the stack Diameter of the stack Emission rate (grams
{in meters) I - {in meters) Il' per second) II —

Exit velocity of the Temperature of the Ambient temperature
gas (in meters per |lﬁ.ﬁ exiting gas (in degrees m.ﬁ of the air (in degrees FE.U
second) Celsius)y Celsins)y
Atmospheric © Moderate ;
conditsif:)m: € Very unstable unstable ¥ Slightly unstable
' Somewhat
w L g
Meutral stable Stable

Wind velocities {in meters per second, must have 11 points)

= F F F P F B F F F

Distances downwind to be calculated (in meters, must have 11 peints)

oo o o o o

WEry moderately somewhat somewhat

unstable (A unstable (B) unstable () neutral (D ~ stable (E stable (F




SIapEL | X} STUREEND pUjsMIsa

ook 008 00z O0d Q0% 005 OO 00E ODE O

S/W Z'Z=n ‘g=558|2 A|19e15

Baipsau [ A) Scupiag puMassces

292 m

Plume concentration H

Cross/downwind distance for ROI

292 m

H=



@ The AHS-160 bandwidths are not sufficient for detetron of gas
compound based on their spectra abundance;

@ Using the CIBR ratio, it is possible to detect polltant plume in
the LWIR wavelengths;

@ The LWIR information is complimentary to the VNIR d ata
(detection over heterorganic background).

@ It is possible to detect pollutant plume using CIBRn the VNIR
wavelengths over homogeny background (no mix pixel)



Plume detection/concentration:

@ To use other ratio technigue based on mix informatin from the
VNIR+LWIR data;

@ To study the effect of the atmospheric calibratioron the plume
detection;

@ To apply adapted atmospheric model and atmospheric
calibration;

® To apply other plume concentration models.

Future studies using the AHS-data

® Man-made feature detection using MWIR-LWIR data;
@ The chemical port of Antwerp as “heat island”.



