

SWIR and drones for early detection of oil spills in ports

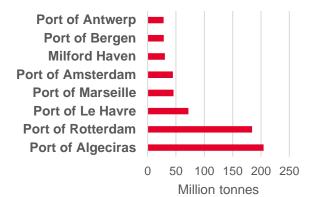
Svetlana Samsonova, Bob Spanoghe, Paul Scheunders, Steve Vanlanduit, Bikram Koirala, Seppe Sels, Robrecht Moelans, Els Knaeps

Floreffe Abbey 9th of March 2023

9/03/2023 ©VITO – NOT FOR DISTRIBUTION

Problem & Market

50 oil spills in 2019



EUR 1.0 - 1.2 million (yearly)

Reimburse 40%

Largest European oil traffic ports

638 million tonnes yearly

Operational System in Port

Initial recognition of oil spill (detection, extent and oil type)

- < 2 minutes after arrival
- edge processing on drone platform
- real-time information streaming to emergency operations centre

Drone stays above oil spill (hoovering) - live oil spill severity measurement

Post-processing for more detailed information

- data transmission to processing server
- < 1 hour after data upload
- improved AI model
- identify source of the spill

Operational System in Port

Challenges

- Fast detection
- Port environment
 - Docks = relatively small busy areas
 - Not much current, wind or waves
- Type of oil
 - Refined oils: hydraulic oil, lubricating oil, diesel, marine fuel & waste oil
- Selection of most appropriate cameras + limitations + cost / benefit
 - UV
 - Broadband RGB
 - Multispectral VNIR
 - (Multispectral) SWIR
 - LWIR

SWIPE

Period: 01/07/2022 - 31/12/2023

The **objectives** of the project are:

(1) to develop an offline prototype workflow to detect & delineate oil spills during daytime from an airborne drone platform

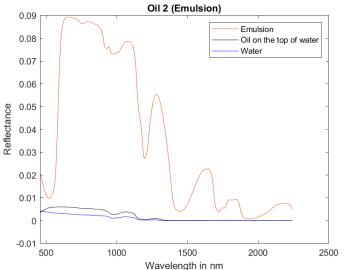
(2) to demonstrate the technology in the port of Antwerp

The **result** will be a prototype workflow to detect oil spills at TRL 5-6, accompanied by a protocol for the camera settings and flight protocol.

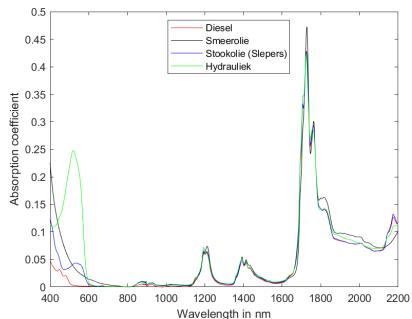
The **innovation** in the project is:

(1) linked to the challenging application of the technology in a complex and harsh port environment

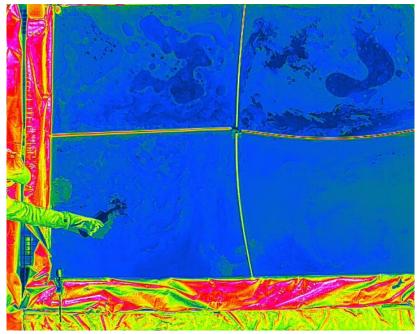
(2) the combined use of different camera systems



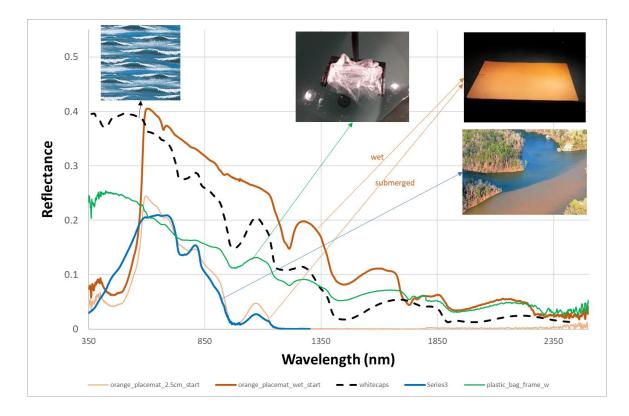
Previous work: RGB + LWIR

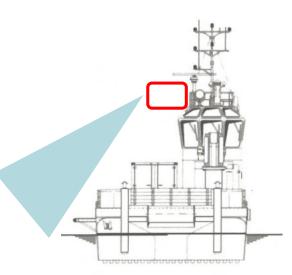


SWIPE: Laboratory Measurements


Visible range seems most promising Added value multispectral VNIR compared to broadband RGB Potential of UV range

SWIR is not useful for detection of pure oils except for oil emulsions


SWIPE: Test Set-up (outdoors)


Data acquired: RGB / multispectral VNIR / multispectral SWIR / 3 x LWIR / 2 x irradiance

SWIPE: False Positives

SWIPE: Data Acquisition

- DroneMatrix
 - Network of drones capable of performing automated flights in the port
 - Drone-system 1: RGB + LWIR
 - Drone-system 2: multispectral VNIR
- Brabo Cleaning Company
 - System attached to monkey bridge of multicat
 - Multispectral VNIR + UV (+ LWIR)
 - Vessel dedicated to oil spill clean-up in port of Antwerp
- Historical dataset: small drone with RGB + LWIR

