WATER AND VEGETATION TOWER RADAR EXPERIMENTS FOR IMPROVED CLIMATE MONITORING

Hans Lievens, Niko Verhoest, Diego Miralles Department of Environment, Ghent University

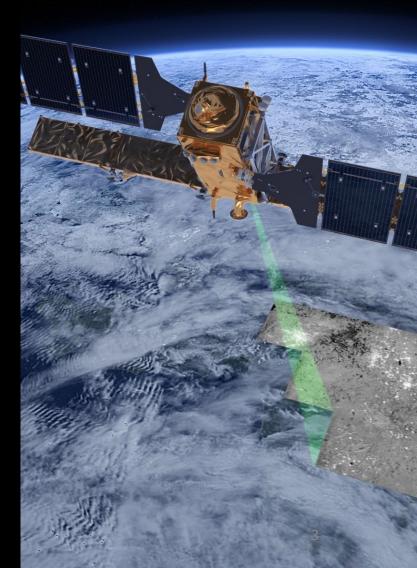
> Sébastien Lambot Earth and Life Institute, UC Louvain

Lieven de Strycker, Liesbet Van der Perre, Bert Cox DRAMCO, KU Leuven

Hans-Peter Marshall Department of Geosciences, Boise State University, USA

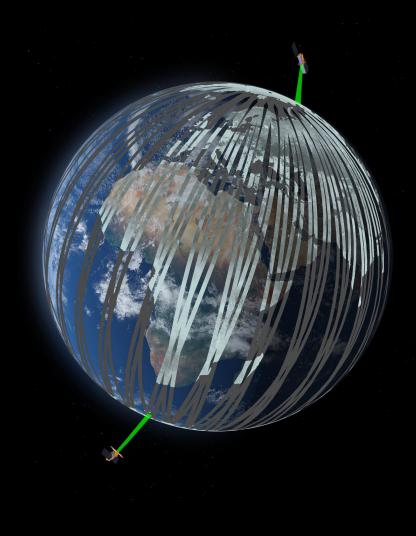
> Susan Steele-Dunne M-WAVE, TU Delft, Netherlands

Radar remote sensing of Essential Climate Variables (ECV)


- Surface soil moisture (SSM):
- Root-zone soil moisture (RZSM)
- Vegetation biomass (or VOD)
- Snow water equivalent (SWE)
- Land evaporation (E)

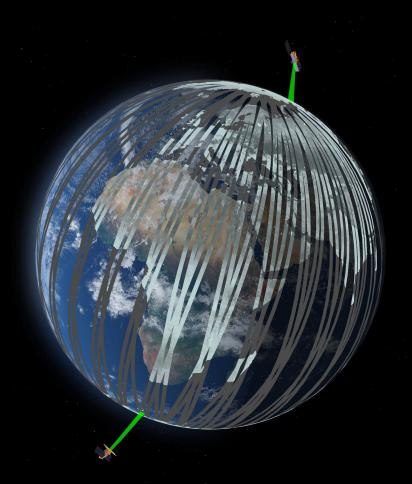
Challenges in radar remote sensing of ECVs

Lack of frequent observations limits monitoring capabilities


- Satellite observations are snapshots
- Short-term dynamics are unobserved
- Can have long-lasting impacts
 - Processes: vegetation stress event -> biomass
 - Retrievals: rain-on-snow event -> SWE retrieval

The near future of radar remote sensing

Towards higher temporal frequencies


- Expanding current satellite missions
 - Sentinel-1 (1C & 1D coming soon): C-band SAR constellation
 - ROSE-L: Copernicus Expansion L-band SAR
 - TSMM: Canadian Ku-band SAR for snow mass
 - ..
- New satellite constellation concepts
 - SLAINTE (ESA EE12): 3-satellite constellation
 - Sub-daily variations in water stored within soil-vegetation
 - Improved understanding of land-atmosphere interactions
- Geostationary satellite concept
 - HYDROTERRA (ESA EE12)
 - Sub-daily water cycle observations

The near future of radar remote sensing

But: what do we know about radar remote sensing of diurnal processes?

- Which processes can we observe?
 - Moisture movement through soil-plant (vegetation stress, drought)
 - Short-term evaporation dynamics (interception loss)
 - Snowpack changes (metamorphism, melt/freeze)
 - •
- What temporal resolutions, microwave frequencies and polarizations are needed?

To support future radar missions, improved understanding of microwave responses to sub-daily processes is essential

Hypotheses

- 1. Improved physical understanding of how sub-daily processes impact radar measurements offers opportunity to improve ECV retrievals
- 2. Tower radar experiments are the best way to achieve improved understanding

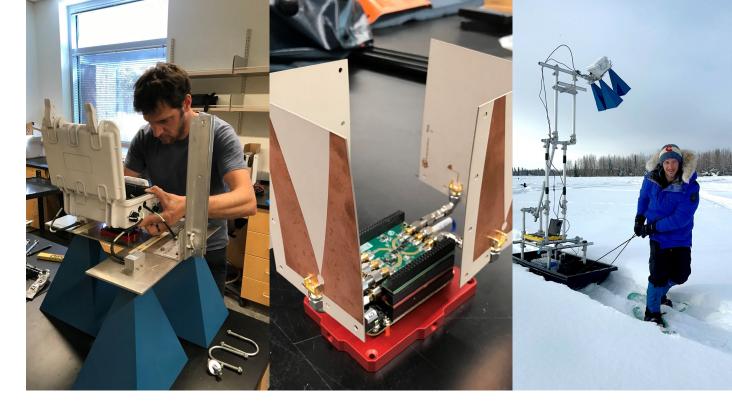
Objectives


- 1. Build new radar sensors [WP2: Sensor design]
- 2. Improve understanding of sub-daily scattering signatures [WP3: Field experiments]
- 3. Improve methods for radar retrievals of ECVs [WP4: Modelling]

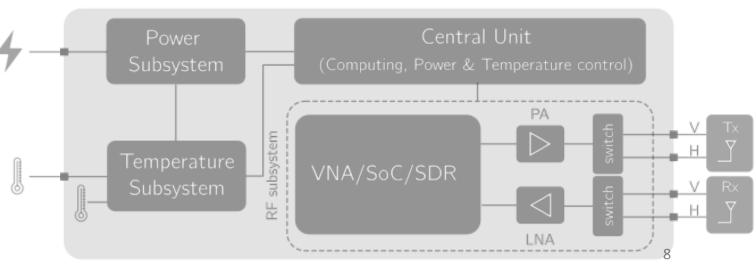
WP2: Sensor design

6 radar sensors

- 4 C-band (5.4 GHz), 1 L-band (1.3 GHz), 1 Ku-band (13.5 GHz)
- 2 sensors at each of 3 study sites
- Tomographic principle: scatter sources within soil/vegetation/snow


WP2: Sensor design

Components


- Radio-Frequency system
 - [VNA] Vector Network Analyzer
 - [SoC] System-on-chip pulsed radar
 - [SDR] Software-defined radio
- Antennas
 - Linear tapered slot
 - Standard gain horns
- Enclosure with thermal control

Calibration

- Anechoic chamber
- Calibration targets
- Comparison between radars

Radar system

1. FERM, Belgium (50.66°N, 4.64°E) Agricultural crops (cereal) UCL experimental research site 2. Bogus Basin, USA (43.77°N, 116.10°W) 1930 m, soil & shrubs, montane forest snow Previous radar experiments in BELSPO C-SNOW **3. Weissfluhjoch, Switzerland** (46.83°N, 9.81°E) 2536 m, rocks, tundra snow WSL SLF research site since 1936

1. FERM, Belgium (50.66°N, 4.64°E) Agricultural crops (cereal) UCL experimental research site

Scatter signature analyses Water redistribution in soil-vegetation Interception loss Dew formation, freeze-thaw

Setup

<u>C- and L-band</u> radar Vegetated and bare footprints 15°, 30°, 45° and 60° incidence angles VV+VH and HH+HV polarizations

2. Bogus Basin, USA (43.77°N, 116.10°W) 1930 m, soil & shrubs, montane forest snow Previous radar experiments in BELSPO C-SNOW

Scatter signature analyses Water redistribution in soil-vegetation Interception loss Dew formation, freeze-thaw Snow metamorphism Rain-on-snow Snow melt-freeze cycles

Setup

<u>C- and Ku-band</u> radar Vegetated and bare footprints 15°, 30°, 45° and 60° incidence angles VV+VH and HH+HV polarizations

Comparison with FERM | Shrub vs Crop soil-vegetation scattering dynamics

3. Weissfluhjoch, Switzerland (46.83°N, 9.81°E) 2536 m, rocks, tundra snow WSL SLF research site since 1936

Scatter signature analyses

Snow metamorphism Stratigraphy Wind effects Sublimation

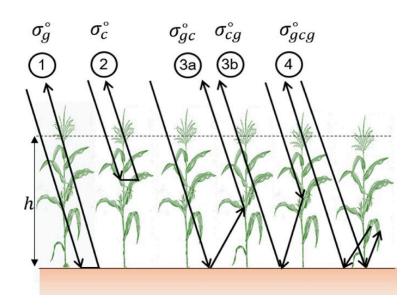
Setup

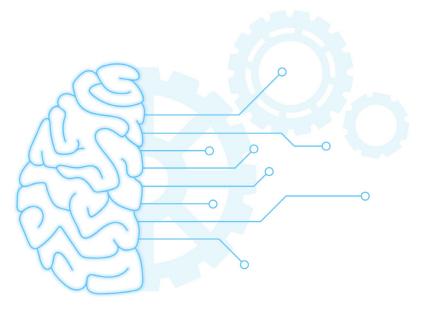
<u>C- and Ku-band</u> radar 15°, 30°, 45° and 60° incidence angles VV+VH and HH+HV polarizations

Comparison with Bogus Basin | Snow types reflect climate change impacts Support to Terrestrial Snow Mass Mission | Ku-band saturation in deep snow

	Sensors	Soil	vegetation	snow	atmosphere
FERM	C-band, L-band Hyperspectral camera Lidar Drone radar (L-band) GNSS-R (L-band)	Soil moisture: 5, 30, 50, 100 cm Temperature: 5, 30, 50, 100 cm Surface roughness: pin-profiler Rhizosphere probes (TDR, tensiometers) Deep geophysical monitoring (ERT electrodes)	Interception: leaf water mass per 20 cm (conductance) LAI and biomass: manual sampling Ecophysiological: fluorimeter, Infrared gas analyzers, GreenSeeker, psychrometer, sap flow probes Minirhizotron cameras and tubes Solid isotope analyzer (13C, 15N), Nitrogen analyzer, Water isotope analyzer (d18O, dD)	NA	Evaporation : Eddy covariance Weather station : precipitation, air temp, wind speed & direction, relative humidity, pressure, etc.
Bogus Basin	C-band, Ku-band Hyperspectral camera Snow depth laser Helicopter radar	Soil moisture: 5, 30, 50, 100 cm Temperature: 5, 30, 50, 100 cm Surface roughness: pin-profiler	Interception: leaf water mass per 20 cm (conductance) LAI and biomass: manual sampling	Snow pits: depth, density, temp, grain size & shape, hardness, liquid water, stratigraphy SNOTEL station: depth, SWE, soil temp, soil moisture	Evaporation : Eddy covariance Weather station : precipitation, air temp, wind speed & direction, relative humidity, pressure, etc.
Weissfluhjoch	C-band, Ku-band GPS Webcam	Surface roughness: pin-profiler	NA	Snow pits: depth, density, temp, grain size & shape, hardness, liquid water, stratigraphy Snow stratigraphy (SMP) Snow scale & pillow Snow temperature profile (IMIS station)	Evaporation: lysimeter Weather station: IMIS automated measuring station Double Fence Intercomparison Reference (DFIR) precipitation gauge Laser disdrometer (precipitation type and intensity)

WP4: Modelling

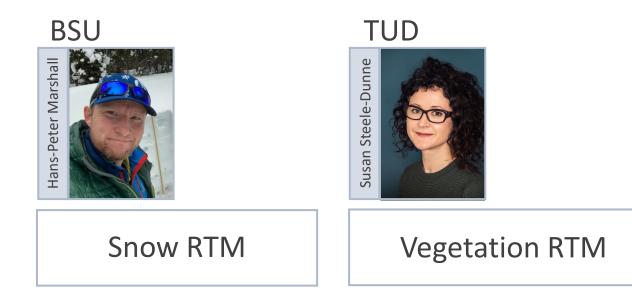

Direct retrievals of SSM, VOD, SWE

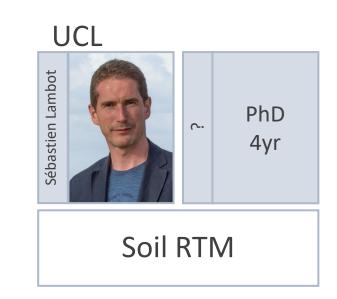

- Radiative Transfer Models for soil, vegetation and snow
- Machine learning algorithms
 - Neural networks
 - Boosting methods

Indirect retrievals of RZSM and E

- GLEAM: Global Land Evaporation Amsterdam Model
 - Simulates water balance and evaporation components
 - Assimilation of SSM, VOD, SWE

Input & validation data: in situ measurements at tower sites




Greetings from our team

UGENT

Coordination – Machine learning – GLEAM data assimilation

Radar sensors

WATER AND VEGETATION TOWER RADAR EXPERIMENTS FOR IMPROVED CLIMATE MONITORING

KU LEUVEN

Conclusions:

UCLouvain

- Detailed radar remote sensing insights for highly-dynamic processes in hydrosphere, biosphere and cryosphere
- Opportunity to improve monitoring of 5 ECVs (SSM, RZSM, VOD, SWE, E)
- Detailed appraisal of current (e.g., Sentinel-1) and prospective (e.g., SLAINTE, ROSE-L, Hydroterra, TSMM) radar satellites
- Reference dataset for development of RTM and retrieval algorithms for soil, vegetation, snow

Contact: Hans.Lievens@UGent.be

TUDelft

