INPLANT

PLANT OPTICAL TYPES TO PREDICT ECOSYSTEM IMPACTS OF PLANT INVASIONS

Elisa Van Cleemput, Hannes Feilhauer, Olivier Honnay, Ben Somers
Invasives are a major problem: Currently 13,000 plant species (3.9% of the extant flora) have become naturalized somewhere as a result of human activity.
Invasive plant species also strongly affect the *functioning of ecosystems*.

Mean effect size (*Hedges d*) of impacts of invasive species.

Vila et al. (2011) *Ecol. Letters*
Predicting the effects of new exotic species on ecosystem functions would allow to set up an *early warning system*

- Predictions have been not successful so far;

- The typical approach among plant ecologists is based on the framework of the *plant traits* (or plant characteristics).
Processes/Functions

```
plant functional types
```

Functional Traits
- growth form
- life form
- nutrients
- biomass
- leaf size/shape
- rooting depth
- seed mass
- vegetation height

PLANT FUNCTIONAL TYPES

Functional Traits
- growth form
- life form
- nutrients
- biomass
- leaf size/shape
- rooting depth
- seed mass
- vegetation height

Plant Trait Database

The LEDA Traitbase
FUNCTIONAL TRAITS
- growth form
- life form
- nutrients
- biomass
- leaf size/shape
- rooting depth
- seed mass
- vegetation height

PLANT FUNCTIONAL TYPES
- Processes/Functions
 - drivers

PLANT FUNCTIONAL TYPES
- Functional Traits
 - Functional Types
 - Processes/Functions
 - drivers

Gradient

Diagram
- Vegetation types
- Functional traits
- Scatter plot
- Diagram of plant functional types
Processes/Functions

Drivers → ? → **Plant Functional Types**

Functional Traits
- Growth form
- Life form
- Nutrients
- Biomass
- Leaf size/shape
- Rooting depth
- Seed mass
- Vegetation height

Plant Functional Types

Processes/Functions

Plant Functional Types
Spectral Information?

Ligth Capture & growth
(pigments, nutrients, leaf mass)

Foliar defense & longetivity
(cellulose, lignin, phenols, tanins)
PLANT FUNCTIONAL TYPES

FUNCTIONAL TRAITS
- growth form
- life form
- nutrients
- biomass
- leaf size/shape
- rooting depth
- seed mass
- vegetation height

drivers

\[F \]

\[FUNCTIONAL\ T Raits \]

\[FUNCTIONAL\ TYPES \]

\[PROCESSES/FUNCTIONS \]

gradient

\[PLANT\ FUNCTIONAL\ TYPES \]

Processes/Functions

- Drivers

Plant Optical Types

Spectral Information

Optical Traits

- Inliggende wecconstaart
- Inopdruw
- Overwelk gras
- Veldbies
- Grote gate leer

Plant Optical Types

Gradient
Overall objective and vision

Develop and examine a functional-trait-based framework, founded on optical data, that enables us to better monitor and understand invasion impacts on the functioning of grassland ecosystems.
gradient

PROCESSES/FUNCTIONS

drivers

PLANT OPTICAL TYPES

SPECTRAL INFORMATION

OPTICAL TRAITS

PLANT OPTICAL TYPES
How well can we estimate functional traits in grass- and shrubland ecosystems, based on hyperspectral remote sensing?

Empirical non-parametric regression techniques (Zhao et al., 2013)

Spectral indices for chlorophyll (Ustin et al., 2009)

Mean pigment accuracy retrieval (R^2) for a wide range of vegetation types (Huang et al., 2015)

Empirical prediction accuracy for a wide range of vegetation types (Homolová et al., 2013)

Spectranomics database: 5000 tree species (Asner & Martin, 2016)

What do we know?
Review

The functional characterization of grass- and shrubland ecosystems using hyperspectral remote sensing: trends, accuracy and moderating variables

Elisa Van Cleemputa,*, Laura Vanierschota, Belén Fernández-Castilla, Olivier Honnay, Ben Somers

a Division of Forest, Nature and Landscape, KU Leuven, Celestijnenlaan 200E, 3001 Leuven, Belgium
b Faculty of Psychology and Educational Sciences and Imec-Itec, KU Leuven, Etienne Sabbelaan 51, 8500 Kortrijk, Belgium
c Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
Meta-analysis: A synthesis of studies

R² and nRMSE of trait estimation model

Weighted mean R²
Weighted mean nRMSE
Three-level meta-analysis

3 sources of variation

\[R^2_{\text{study } i} = \overline{R^2} + v_i + u_{ik} + e_{ik} \]

- \(v_i \): random deviation due to differences between studies
- \(u_{ik} \): random deviation due to differences between samples within studies
- \(e_{ik} \): Residual due to random sampling variation

Overall mean ES
Mean R^2

95% confidence interval (# effect sizes)

- Lignin: 0.64 (9)
- Water: 0.69 (42)
- Nitrogen: 0.74 (129)
- Phosphorus: 0.75 (45)
- Chlorophyll: 0.77 (83)
- Leaf Area Index: 0.79 (73)
- Carotenoids: 0.80 (14)
Overall objective and vision

Develop and examine a **functional-trait-based framework, founded on optical data**, that enables us to better monitor and **understand invasion impacts** on the functioning of grassland ecosystems.
STUDY SITES AND SAMPLING DESIGN

Impatiens glandulifera
Himalayan balsam
Reuzenbalsemien

Himalayas
19th century
Annual forb

Impatiens glandulifera
Himalayan balsam
Reuzenbalsemien

Himalayas
19th century
Annual forb

Solidago gigantea
Giant goldenrod
Late guldenroede

North America
Mid-1700s
Perennial forb, rhizomes

Solidago gigantea
Giant goldenrod
Late guldenroede

North America
Mid-1700s
Perennial forb, rhizomes
STUDY SITES AND SAMPLING DESIGN

Impatiens glandulifera
Himalayan balsam
Reuzenbalsemien

40 plots

Solidago gigantea
Giant goldenrod
Late guldenroede

44 plots

Plots:
- Space-for-time substitution
- 2m x 2m
- Vegetation survey (Londo)
- Quantification of ecosystem functioning
- Functional and spectral characterization of dominant species
ECOSYSTEM FUNCTIONING

1. Peak live aboveground biomass
2. Soil elements: available P, N, C
3. Decomposition rate of standard material:
 Tea bag Index

Mass loss of green tea
~ Stabilisation of labile fraction into recalcitrant fraction

Mass loss of Rooibos tea
~ decomposition rate
FUNCTIONAL AND SPECTRAL CHARACTERIZATION OF DOMINANT SPECIES

39 dominant herbaceous species → 73 observations

Functional traits

Leaf Economic Spectrum: SLA, LDMC, LNC, LPC, Chlorophyll
Size traits: plant height, leaf area
Decomposition related traits: LCaC, LMgC, carotenoids
FUNCTIONAL AND SPECTRAL CHARACTERIZATION OF DOMINANT SPECIES

39 dominant herbaceous species → 73 observations

Functional traits

Leaf Economic Spectrum: SLA, LDMC, LNC, LPC, Chlorophyll
Size traits: plant height, leaf area
Decomposition related traits: LCaC, LMgC, carotenoids

Reflectance

Intermezzo
COMMON METHODS

Measuring the spectral signatures of individual herbaceous species is a challenge

Lab measurements of *Poa pratensis* (Bayat et al., 2016)

Lab measurements of *Halimium umbellatum* (Davishvile et al., 2008)

Point measurements, hand-held (Thulin et al. 2012)

Leaf measurements with leaf clip or integrating sphere (ASD)

3 mm pixels with AISA + Eagle spectrometer (Lopatin et al. 2017)
Linear signal unmixing:

\[\text{spectrum}_{\text{vegetation}} = \frac{\text{spectrum}_{\text{measured}} - f_{\text{black table in FOV}} \cdot \text{spectrum}_{\text{black table}}}{f_{\text{vegetation in FOV}}} \]
COMMON METHODS

Lab measurements of *Poa pratensis* (Bayat et al., 2016)

Lab measurements of *Halimium umbellatum* (Darvishzadeh et al., 2008)

Leaf measurements with leaf clip or integrating sphere (ASD)

3 mm pixels with AISA + Eagle spectrometer (Lopatin et al. 2017)

PRACTICAL TOOL

A novel procedure for measuring functional traits of herbaceous species through field spectroscopy

Elisa Van Cleemput | Dar A. Roberts | Olivier Honnay | Ben Somers

Received: 20 February 2019 | Accepted: 21 May 2019
DOI: 10.1111/2041-210X.13237

Lab measurements of *Poa pratensis* (Bayat et al., 2016)
FUNCTIONAL AND SPECTRAL CHARACTERIZATION OF DOMINANT SPECIES

39 dominant herbaceous species \Rightarrow 73 observations

Functional traits

Leaf Economic Spectrum: SLA, LDMC, LNC, LPC, Chlorophyll
Size traits: plant height, leaf area
Decomposition related traits: LCaC, LMgC, carotenoids

Reflectance
Two specific approaches and RQs

Develop and examine a functional-trait-based framework, founded on optical data, that enables us to better monitor and understand invasion impacts on the functioning of grassland ecosystems

1. Can we delineate meaningful PFT’s in a herbaceous context, and to what extent are they spectrally deductible?

2. What are the mechanisms through which invasive alien species alter ecosystem functioning?
Emergent PFTs vs. Emergent POTs

7 groups 8 groups

Entanglement = 0.13
Two specific approaches and RQs

Develop and examine a functional-trait-based framework, founded on optical data, that enables us to better monitor and understand invasion impacts on the functioning of grassland ecosystems

1. Can we delineate meaningful PFT’s in a herbaceous context, and to what extent are they spectrally deductible?

2. What are the mechanisms through which invasive alien species alter ecosystem functioning?
Processes/Functions

Drivers

Plant Functional Types

Functional Traits

Plant Functional Types

Processes/Functions

'STEREO III' CALL 2015 - INPLANT
I. glandulifera leads to more nutrient-rich plant communities.

S. gigantea shifts the community towards more conservative traits.

Similar pattern were observed both for the optical and functional traits space (Procrustes r = 0.46, p ≤ 0.001)
Two specific approaches and RQs

Develop and examine a functional-trait-based framework, founded on optical data, that enables us to better monitor and understand invasion impacts on the functioning of grassland ecosystems.

1. Can we delineate meaningful PFT’s in a herbaceous context, and to what extent are they spectrally deductible?

2. What are the mechanisms through which invasive alien species alter ecosystem functioning?
SCHEDULED FLIGHT AND FIELD CAMPAIGN SUMMER 2017 2018

Boom
26/06/'18
5 lines

Wichelen
27/06/'18
3 lines

Lier
02/07/'18
2 lines

Mechelen
02/07/'18
3 lines

Additional flight on 02/09/2018 over all sites
FIELD SURVEY

Vegetation survey

Sunphotometer: aerosols
ACKNOWLEDGEMENTS

Ben Somers
KULeuven
Department Earth & Environmental Sciences
Division Forest, Nature & Landscape
Celestijnenlaan 200e - bus 2411
B-3001 Leuven

ben.somers@kuleuven.be
elisa.vancleemput@kuleuven.be

INPLANT

https://inplant-project.weebly.com/

Ben Somers
KULeuven
Department Earth & Environmental Sciences
Division Forest, Nature & Landscape
Celestijnenlaan 200e - bus 2411
B-3001 Leuven

ben.somers@kuleuven.be
elisa.vancleemput@kuleuven.be