

MUZUBI – Advanced phase unwrapping using split-band interferometry

Denis Defrère Liège Space Center – University of Liège

A. Radioti, L. Libert, D. DeRauw, Q. Glaude, A. Orban, M. Kirkove, and C. Barbier

MUZUBI partners: F. Kervyn, B. Smets (RMCA), N. d'Oreye (ECGS)

MUZUBI: Project summary

- MUlti-Zone phase Unwrapping using advanced Split Band Interferometry
 - Technical/methodological core: – Absolute phase unwrapping.
 - Application core:
 - Volcanological risk assessment and early warning.

Project main partners

- Belgian partners:
 - ✓ Centre Spatial de Liège (CSL):
 - Responsible for technological and methodological developments.
 - ✓ Royal Museum of Central Africa (RMCA):
 - Responsible for applicative aspects on Virunga Volcanoes.
- International partners:
 - European Centre for Geodynamics and Seismology / Musée National d'Histoire Naturelle (ECGS/MNHN) – Luxembourg
 - Processing parameters and validation of results

Project motivation

 How to connect independent phase zones to get continuous measurements?

Rationale for SBInSAR

- Absolute ranging first proposed by Masden and Zebker (1992)
- Studied by various authors as Multi-Chromatic Analysis (MCA) for absolute phase and height retrieval (e.g., Veneziani et al. 2003, de Rauw et al. 2009, Bovenga et al. 2013)
- Solution to assist phase unwrapping and re-connect disconnected regions (<u>MUZUBI</u>: Libert et al. 2017)
- Theoretical limitations investigated in details by Veneziani et al. (2003)
- Practical limitations and applicability on real test cases (Defrère et al. in prep)

- Bandwidth splitting
- <u>PROS</u>: spectral diversity
- <u>CONS</u>: loss of geometric coherence and spatial resolution

- Bandwidth splitting
- PROS: spectral diversity
- <u>CONS</u>: loss of geometric coherence and spatial resolution

- Fringe rate will vary linearly with respect to frequency
- The absolute phase is proportionnal to the slope:

$$\Delta \phi_i \simeq p(\nu_i) = s\nu_i + u$$

- The precision of the measured absolute phase is proportional to the precision on the slope or the intercept
- For non overlapping sub bands (Libert et al. 2017):

- Large bandwidth (Δv)
- Small carrier central frequency (v_0)
- High coherence (i.e. small σ_{ϕ})

Practical example

- TANDEM-X monostatic images of Mount Uluru (Australia, 2009/02/12 2009/02/23);
- B = 300 MHz

Amplitude of master image

Practical example

Error on absolute phase from SBInSAR \$\$\phi_{sb}\$

Error distribution

Mode of error ~5π (per look)
 What about the error for an independently-unwrapped zone?

Phase offset determination

Phase offset determination

 ϕ^{sb} is less precise but more accurate!

Test cases and InSAR processing Six different test cases (sensors, bandwidths, modes, and coherence

- Six different test cases (sensors, bandwidths, modes, and coherence levels);
- Processing using CSL InSAR suite (CIS), adapted to compute the error for each independently-unwrapped zone
- InSAR processing using branch-cut algorithm for phase unwrapping and 5x5 multi-looks

ID	SENSOR	MODE	REGION	DATES	FREQ.	BAND.	B_p	Ha
					[GHz]	[MHz]	[m]	[m]
1	S1	TOPS	Cologne	2019-03-04/2019-03-16	5.4	56	159	79.7
2	S1	STRIPMAP	Houston	2019-04-15/2019-04-21	5.4	100	60.4	137
3	CSK	SPOTLIGHT	Virunga	2011-07-30/2011-07-31	9.6	130	71	69
4	TSX	STRIPMAP	Nyamuragira	2008-06-22/2008-07-03	9.6	150	13	300
5	TSX	SPOTLIGHT	Uluru	2009-02-12/2009-02-23	9.6	300	233	34
6	TDX	SPOTLIGHT	Copahue	2014-12-15/2014-12-26	9.6	300	32	163

Minimum number of PSfs per

for absolute phase measurement with $3 \times \sigma_n < 0.5$ cycle).

- Typically, 50-100 (resp. 500-1000) PSfs for TANDEM-X (resp. SENTINEL)
- Typically ~3x above fundamental noise limit for TANDEM-X

SENTINEL (B = 56 MHz)

Limits of applicability

- SENTINEL: valid for ~3% of the zones (i.e. correction within 0.5 cycle)
- TANDEM-X: valid for ~30% of the zones

SENTINEL (B = 56 MHz)

TANDEM-X (B = 300 MHz)

Prediction for HRWS

 High Resolution Wide Swath (HRWS, successor of TANDEM-X): bandwidth 1200 Mhz

Conclusions and ongoing work

- Operational absolute phase retrieval with SBInSAR
- Typical SBInSAR error of TSX/TDX of ~2.5 cycles per look (50 to 100 PSfs required per zone for <0.5 cycle at 99.7% confidence)
 - Method applicable to ~30% of the zones
 - ~3x above fundamental noise limit
- Very promising for future sensors such as HRWS => accurate DEM and deformation mode
- Ongoing method validation with external DEM, application to bistatic data, and effect of ionosphere