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General context: Nonlinear Spectral mixing
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Specific goals

Nonlinear effects Spectral variability

Validation
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Approaches

1. A physics-based nonlinear model
• Easy to use:

- Model easy to invert and fit to data
- Parameters have clear physical meaning

• Allows to include shadows, skylight, neighbor effect

2. A data driven method nonlinear unmixing framework
• Flexible, independent of specific model
• Supervised approach (ground truth training and validation data)
• Accounts for spectral variability
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Parameter P for multiple reflections 

1. Multilinear mixing model 

Parameter Q for shadow
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1. Multilinear mixing model 

R. Heylen, V. Andrejchenko, Z. Zahiri, M. Parente, P. Scheunders. Nonlinear hyperspectral unmixing with graphical 
models. IEEE Transactions on Geoscience and Remote Sensing, 57 (7), 4844-4856, 2019.
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2. Supervised nonlinear unmixing framework
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2. Supervised nonlinear unmixing framework
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Drill core hyperspectral dataset

2. Supervised nonlinear unmixing framework

B. Koirala, M. Khodadadzadeh, C. Contreras, Z. Zahiri, R. Gloaguen, P. Scheunders, A supervised method for nonlinear 
hyperspectral unmixing, Remote Sensing, 11, 2458, 2019.

Collaboration with Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz 
Institute Freiberg for Resource Technology (HIF), Germany
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2. Supervised nonlinear unmixing framework

Mineral powder mixtures

Pure Mineral Density 
(g/cm3)

Grain size 
(µm)

Fe2o3 5.25 0.8
Al2o3 3.98 3.5
Sio2 2.64 23
Tio2 3.89 0.5
Cao 3.34 2.7

Different binary mixtures 
Endmember 1 Endmember 2
Al2o3 Sio2

Cao Sio2

Cao Tio2

Fe2o3 Al2o3

Fe2o3 Cao
Fe2o3 Sio2

Sio2 Tio2

B. Koirala, Z. Zahiri, P. Scheunders. A machine learning framework for estimating leaf biochemical parameters from  
ts spectral reflectance and transmission measurements.IEEE Transactions on Geoscience and Remote Sensing,
58 (10), 7393-7405, 2020.
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2. Supervised nonlinear unmixing framework

Mineral powder mixtures
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Conclusions

• Mixing models completely fail (even Hapke model): not robust to spectral
variability.

• Data-driven approaches fail, physical relation between the spectra and the
fractional abundances is lost.

• The proposed hybrid approach: error rates of  only a few percent.

2. Supervised nonlinear unmixing framework
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2. Supervised nonlinear unmixing framework

B. Koirala, Z. Zahiri, P. Scheunders. A machine learning framework for estimating leaf biochemical parameters from its 
spectral reflectance and transmission measurements.IEEE Transactions on Geoscience and Remote Sensing, 58 (10), 
7393-7405, 2020.
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Future activities 2020-2021

Main aspects

Fundamental 
research  a real 

quantitative 
approach

Damage detection 
for Industrial 
application

• Powder: Mixtures of minerals
• Paste: Mixtures of minerals and water
• Mixtures of active minerals and water
• ….

• Mixtures of active 
minerals and water

• Corrosion 
• Concrete damages
• Coating problems
• …

• Understand spectral 
variability

• Reduce dependence on 
training data

Remote sensing 
applications

• crop leaf parameter 
estimation from 
remote sensing time 
series 
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