Gepubliceerd op 24 juli 2019
ESA’s Aeolus satellite, which carries the world’s first space Doppler wind lidar, has been delivering high-quality global measurements of Earth’s wind since it was launched almost a year ago. However, part of the instrument, the laser transmitter, has been slowly losing energy. As a result, ESA decided to switch over to the instrument’s second laser – and the mission is now back on top form.
Developing novel space technology is always a challenge, and despite the multitude of tests that are done in the development and build phases, engineers can never be absolutely certain that it will work in the environment of space.
This figure shows wind measurements by Aeolus while crossing the African continent between Turkey (on the right) and the Southern Ocean (left).
Aeolus is, without doubt, a pioneering satellite mission – it carries the first instrument of its kind and uses a completely new approach to measuring wind from space.
The instrument, called Aladin, not only comprises the laser transmitters, but also one of the largest telescopes ESA has put into orbit and very sensitive receivers that measure the minute shifts in wavelength of light generated by the movement of molecules and particles in the atmosphere caused by the wind.